Report on Supplementary Contamination Assessment

Stage 5-14 Radcliffe, Wyee Residential Subdivision

82219014

Prepared for Wyee Land Pty Ltd C/- Northrop Consulting Engineers

24 October 2018

Contact Information

Cardno (NSW/ACT) Pty Ltd ABN 95 001 145 035

34/205-207 Albany Street North Gosford NSW 2250 Australia

www.cardno.com Phone +61 2 4323 2558 Fax +61 2 4324 3251

Document Information

Prepared for	Wyee Land Pty Ltd C/- Northrop Consulting Engineers
Project Name	Stage 5-14 Radcliffe, Wyee Residential Subdivision
File Reference	82219014-003.0 Report on Supplementary Contamination Assessment
Job Reference	82219014
Date	24 October 2018
Version Number	0

Author(s):

Dan McCallum Effective Date 24/10/2018 Graduate Environmental Scientist Approved By: Bob Campbell Date Approved 24/10/2018 Senior Environmental Scientist

Document History

Version	Effective Date	Description of Revision	Prepared by	Reviewed by
A		Internal Draft for Rev	DM / HS	IGP
0	24/10/2018	Issue to Client	DM / HS	BC

Table of Contents

1	Introdu	ction	1
	1.1	Background	1
	1.2	Purpose and Objectives	1
	1.3	Scope	1
2	Previou	is Investigations	3
	2.1	Preliminary Site Investigation and Contamination Assessment	3
3	Site Ins	pection and Surrounding Environment	4
	3.1	Site Identification	4
	3.2	Site Features and Observations	4
	3.3	Surrounding Environment and Land Uses	6
4	Publish	ed Data	6
	4.1	Regional Geology	6
	4.2	Acid Sulfate Soils	6
	4.3	Hydrogeology	7
	4.4	EPA Records Search	7
5	Site His	story	8
	5.1	Personnel Familiar with the Site	8
	5.2	Review of the Historical Aerial Photos	8
	5.3	Summary of Site History	10
6	Criteria	for Contamination Assessment	11
7	Investig	gation Methodology	13
	7.1	Supplementary Contamination Assessment	13
	7.2	Laboratory Testing	13
	7.3	Sampling Methodology and Decontamination Procedures	13
	7.4	Quality Control/Quality Assurance	14
	1.1	Laboratory QC and QCI Report Summary	14
8	Areas a	and Contaminants of Potential Concern	16
9	Laborat	tory Analytical Results	17
	9.1	Analytical Tables	17
	9.2	8 Heavy Metals	17
	9.3	Total Petroleum Hydrocarbons (TPH)	17
	9.4	Benzene, Toluene, Ethylbenzene, Xylene and Naphthalene (BTEXN)	17
	9.5	Polycyclic Aromatic Hydrocarbon (PAH)	17
	9.6	Organophosphorous and Organochlorine (OP/OC) & Polychlorinated Biphenyls (PCB) Compounds	; 18
	9.7	Asbestos Identification in Soils	18
10	Concep	otual Site Model	19
11	Discuss	sions	20
	11.1	Potential Acid Sulfate Soil	20

	11.2	Soil Contamination	20
12	Conclus	ons and Recommendations	22
	12.1	Conclusions	22
	12.2	Recommendations	22
13	Limitatio	ns	23
14	Referen	ces	24

Appendices

Appendix A	Figures
------------	---------

Appendix B Logs and Explanatory Notes

- Appendix C Analytical Results
- Appendix D QA/QC Report

Tables

Table 3-1	Site Details	4
Table 3-2	Site features and Observations	4
Table 3-3	Surrounding Land Use	6
Table 4-1	Registered Groundwater Bore Search Summary	7
Table 5-1	Douglas Partners Historical Aerial Photos (2007)	9
Table 5-2	Aerial Imagery Review	10
Table 6-1	Health-based and Ecological Assessment Criteria	12
Table 7-1	Laboratory QA/QC Outlier Summary	15
Table 8-1	Site Activities and Potential Contaminants of Concern	16
Table 9-1	TP201-TP205 Zinc Summary Statistics	17
Table 10-1	Summary of Contaminated Exposures	19

1 Introduction

1.1 Background

Cardno (NSW/ACT) Pty Ltd (Cardno) were engaged by Northrop Consulting Engineers (Northrop) on behalf of Wyee Land Pty Ltd, to undertake a Supplementary Contamination Assessment (SCA) for the proposed Radcliffe, Wyee residential development, located at Lot 173 DP 1212974 & Lot 212 DP 866437, off Bushells Ridge Road, Wyee. The assessment area and site boundaries are shown on **Figure 1**, attached in **Appendix A**.

The site was the subject of a previous Douglas Partners *Preliminary Geotechnical and Contamination Assessment* report ("DP Report") (JN. 41810, date. July 2009) [1] and is discussed in more detail in in Section 2.

The current investigation was undertaken to address issue previous identified in the DP Report [1] and was targeted to the following:

- > Proposed Stage 5 and Stages 6-14 of the Site which typically comprised open pasture with limited development; and
- > Former 'Quarried Area' identified in previous DP Report [1] and located within titled Lot 212 DP866437.

The DP Report [1] included a preliminary contamination assessment on larger parcels of land within the area, which included the current investigation area, however no intrusive sampling was undertaken within the current investigation area.

The current SCA utilises information provided within the previous DP Report [1] and other publicly available data, along with the results of limited intrusive sampling with the investigation area.

The SCA was carried out in general accordance with the Cardno's fee proposal 48980519-003.2, dated 1st August, 2018.

1.2 Purpose and Objectives

The assessment was undertaken to assess the potential for contamination to constrain the proposed development of the site into a low-density residential subdivision.

The objective of the SCA was to:

- > Provide additional environmental data to assess potential contamination issues previously identified in the DP Report [1].
- > Interviews with individuals familiar with the site.
- > Assess potential contamination not considered by the DP Report [1].
- > Assess potential contamination and contaminating activities, if any, that have occurred since the release of the DP Report [1].
- > Assess the requirement; if any, for further environmental works required to make the site suitable for the proposed use.

1.3 Scope

Cardno carried out the following tasks to confirm currency of information provided within the previous DP Report [1] and satisfy the purpose and objectives of this assessment.

Defined the Site, Features & Surrounds:

- > Defined the site boundaries based on title information, available data and established a site base plan.
- > Identified the site features including main structures, associated infrastructure and other services.

Cardno[®]

- > Defined the topography, surface water drainage of the site and its proximity to the nearest surface water body and any associated potentially sensitive aquatic ecosystems.
- > Identified the location of nearby sensitive environments and receptors such as residential areas, wetlands, streams or rivers.
- > Identified the zoning of the site under the local Planning Scheme.
- > Reviewed previous contamination assessment and classification of the Site.

Hydrogeology & Groundwater Resource Use

> Ascertained the actual utilisation of groundwater at and in the vicinity of the site through a search of the NSW Groundwater Database at NSW Office of Water website.

Review of Public Records on Site History

- > Publicly available documents relevant to the site (to the extent readily available):
 - Historical imagery available
 - Historical and current maps of the area
- > Selected historical aerial photos presented in previous DP Report [1] (additionally available from the Department of Lands).
- > Public registers such as provided below to identified any sites (this and nearby sites):
 - NSW EPA Contaminated Lands Register

Site Inspection & Surrounds

- > Confirmed the site features and identified any visible evidence of fuel storage tanks (above or below ground) and other infrastructure with potential to cause contamination of soil and/or groundwater.
- > Checked for evidence of soil type and evidence of site cutting and filling or subsidence or placement of solid wastes.
- > Assessed the surrounding area (to a radius of about 200 m and to the extent possible) for potential sources of contamination of soil or groundwater at the site.

Intrusive Site Investigation Sampling & Testing

- > Performed intrusive investigation of soil conditions at the site by excavation, sampling at selected locations and applying methods set out in the following sections of this report.
- > Tested selected soil samples for a broad range of analytes (by a National Association of Testing Authorities (NATA) accredited laboratory).

Reporting

- > Prepared this SCA to document the assessment activities and results to provide findings and recommendations relevant to the objectives of the assessment.
- > Compiled a Conceptual Site Model (CSM) for the site, identifying complete and potential pathways between known and potential sources and receptors. This CSM is incorporated in this investigation report.

2 **Previous Investigations**

2.1 Preliminary Site Investigation and Contamination Assessment

A previous DP Report [1] was undertaken within the proposed Stages 1-14 and immediate surrounds of the Radcliffe, Wyee site. The report was preliminary in nature and included the following:

- > Twenty-four (24) test bores advanced across the site using a Ute mounted continuous push tube sampling rig. Systematic environmental samples were taken at select locations.
- > Identification of potentially contaminating activities that are currently or had previously been undertaken on site.
- > Identification of potential contaminant concerns.
- > Production of preliminary site contamination assessment.
- > Assessment of need for further contamination specific investigations.

The DP Report [1] concluded that the contamination risk across the Site was generally 'low'. However, though anecdotal evidence, it was suggested that several areas of concern existed within the Stage 1-4 area.

A majority of the risks were identified as being outside the Stage 5-14 area, with the exception of 0.4ha area within Lot 212 DP866437 flagged as an 'area of concern'. The area was flagged due to geomorphic features resembling that of a former small-scale quarry.

Further contamination assessment was recommended at Lot 212 DP 866437, with the purpose being to quantify the level of contamination (if any) and delineate contaminated areas in order to facilitate the preparation of a Remediation Action Plan (RAP) if required.

Areas of environmental concern associated with Stages 1-4, were assessed and remediated separate to the current assessment presented herein.

3 Site Inspection and Surrounding Environment

3.1 Site Identification

The subject site details are presented in Table 3-1. For site location, please refer to Figure 1 in Appendix A.

Table 3-1Site Details	
Site Address	Hue Hue Road & Bushells Ridge Road, Wyee
Lot Number and Deposited Plan	Lot 173 DP 1212974 & Lot 212 DP 866437
Site Area	Approx. 94ha
Local Government Area	Lake Macquarie
Relative Zoning (LZN_007) (Lake Macquarie Local Environmental Plan [2])	 Lot 173 DP 1212974 zoned as: E2 Environmental Conservation; E3 Environmental Management; and R2 Low Density Residential Lot 212 DP 866437 zoned as: E2 Environmental Conservation R2 low Density Residential

3.2 Site Features and Observations

Table 3-2Site features and Observations

Item	Observations
Site use	 Residential and agricultural (grazing) land uses.
Weather condition	 Sunny, showers the previous night. Significant dry spell spanning 6-8 weeks prior to investigation.
Site slope and drainage features	 Topographically the site is located within regionally hilly terrain, locally characterized by predominantly north and east facing slopes. The dominant north and east facing slopes fall from an east west trending ridgeline on which Bushells Ridge Road has been constructed. A less dominant west facing slope is located in the eastern portion of the site and falls from the site boundary towards the Unnamed Creek. Slopes within the site generally fall to the north and
	east towards Manning Creek and an Unnamed Creek respectively. The Site has slight hills predominantly ranging from 1-6%, with slopes decreasing to the north.
	 Drainage across the site appears to be comprised of infiltration and / or surficial runoff following the existing contours of the site towards Manning Creek in the north, the Unnamed Creek to the east and several rural dams within the western portion of the site.
	 The highest point of the Site was located along the southern boundary, where existing residential building within Lot 212 DP866437 is located.
	 Lake Macquarie Council's Catchment and Flood Study Map [3] indicates that the Site is not affected by flooding. However, due to presence of two creek lines

ltem	Observations
	some localized flooding may occur in proximity to these water bodies.
Nearby Water Bodies	 Mannering Creek traverses east to west within the northern portion of the Site.
	 The unnamed creek traverses south to north through the eastern third of the Site.
	 Three temporary dams are located within proposed Stages 8 and 9. The dams range in size from 0.05ha to 0.12 ha and all contained varying amounts of standing water at time of investigation.
	 A fourth temporary dam was located in the northern portion of the site. The dam was approximately 0.02 ha in size and contained no standing water at the time of investigation.
	 Potential dam or waterhole in the former stockyard located in the southeastern corner of the Site. Possibly linked to the southern point of the unnamed creek.
Site surface coverings	 Areas of open pasture hroughout the Site.
	 Woodland/shrub region around the unnamed creek.
	 Approx. 10ha of open woodland surrounding existing residence in southwest portion of the site.
Surface soils	 Natural sandy topsoil over the majority of the Site.
Site cut and fill	 Cutting has occurred in the excavated area in former Lot 212 DP 866437.
Buildings	 Rural residential property, three storage containers, and approx. four storage sheds within former Lot 212 DP 866437.Storage containers were constructed of steel while sheds comprised predominantly of metal cladding and timber frames.
	 A recently constructed water facility within the northern portion of the Site.
Potential asbestos in building materials	None evident
Manufacturing, industrial or chemical processes and infrastructure	None evident
Fuel storage tanks (USTs/ASTs)	None evident
Dangerous goods	None evident
Solid waste deposition	 Solid waste present within former Lot 212 DP 866327. Solid waste comprised predominantly of recycled building materials and automotive vehicles / parts. Solid waste appeared to be inert.
Liquid waste disposal features	None evident
Evidence of previous site contamination investigations	 Area of concern presented in DP Report as Lot 212 DP 866437, thought to be quarried area.
Evidence of land contamination (staining or odours)	None evident
Evidence of groundwater contamination	None evident
Groundwater use	None evident

Item	Observations
Vegetation	 Primarily grasses and reeds. Mature trees and shrubs located around the unnamed creek.
Site fencing	 Rural wire fencing along the boundaries of the Site. Former agricultural stockyard in the south eastern corner of the site, bordered by rural fencing.
Additional Notes and Observations	 Excavated area (area of concern) was deemed to be a borrow pit rather than a former quarried area based on site knowledge decreasing the likelihood of contamination. Solid waste (as above) including old vehicles/machinery in Lot 212 DP 866437.

3.3 Surrounding Environment and Land Uses

The site is located in the semi-rural area of Wyee. Land uses around the site are detailed in Table 3-3.

Table 3-3	Surrounding Land Use
Direction	Land Use or Activity
North	Construction of Stage 1-4, Mannering Creek and residential properties.
West	Bushland with intermittent cleared areas and residential properties.
East	Some bushland and higher density residential properties.
South	Bordered by Bushells Ridge Road, with bushland opposite.

4 Published Data

4.1 Regional Geology

Reference to the Gosford-Lake Macquarie 1:100 000 Geology Map indicates that the Site is directly underlain by rocks of the Tuggerah Formation (Rnu). The Tuggerah Formation comprises of Early Triassic deposits of grey to green-grey laminate, red-brown claystone and siltstone, interbedded with fine-to-medium-grained green-grey sandstone and soils derived from the weathering of these rock types. The eastern portion of the site (DP [1] identified area of 'weak soil' shown in **Figure 1** attached in **Appendix A**) is directly underlain by quaternary gravel and sand (Qa).

Reference to the Central Coast Area Coastal Quaternary Geology Map 1:100 000 indicates that the site is predominantly underlain by The Narrabeen Group, with some minor quaternary valley fill (Qav) seams associated with previously mentioned creek lines.

4.2 Acid Sulfate Soils

Review of the Department of Land and Water Conservation Acid Sulfate Soil Risk Maps indicated that the site is situated within an area of no known occurrence.

Further review of Lake Macquarie Council Environmental Plan (LEP) 2014 [4] Acid Sulfate Soils Risk Map shows the site is situated within Class 5 Acid Sulfate Soils (ASS). Class 5 soils indicate and ASS soils assessment is required for works within 500 m of a Class 1, 2, 3 or 4 land that is below 4m AHD and by which the water table is likely to be lowered below 1.0 m.

While the site does not trigger an ASS based on council guidelines, preliminary testing presented in previous DP Report [1], indicated potential for presence of ASS within the topsoil materials across the site. As such,

detailed ASS testing of selected topsoil material across was undertaken to quantify potential presence (if present) of ASS.

4.3 Hydrogeology

A search of the NSW Groundwater Database from Department of Primary Industries – Office of Water NSW, identified one (1) bore within a 1 km radius of the Site. The bore is summarised in **Table 4-1**.

Table 4-1	Registered Groundwater Bore Search Summary
-----------	--

Well Number	Intended Purpose	Coordinates (UTM)	Depth of Bore (m)	SWL (m)	Water Bearing Zone (m)	Proximity to Site (m)
GW064662. 1.1	Water Supply	359443.13 E 6327027.6 N	24.00	-	-	900 m south east

4.4 EPA Records Search

4.4.1 Contaminated land Record of Notices

A search of NSW EPA Record of Notices on 19th September 2018 revealed no notices listed within 1 km of the site.

4.4.2 PoEO Public Register

The PoEO Public Register under Section 308 of the Protection of the Environment Operations (PoEO) Act 1997 contains Environment Protection Licences (EPLs), applications and notices issued by the EPA.

The Public Register was searched on the 19th September 2018 to identify any issues of relevance to the Site. The search revealed no licensed activities within a 1 km radius of the site.

5 Site History

The site history comprised the review of available published data and information presented previous DP Report [1]. Reiteration of data presented in previous Report [1] and additional site history review is detailed herein.

5.1 Personnel Familiar with the Site

As part of the site history interviews with individuals familiar with the site were conducted.

5.1.1 Interview with Mr George Salvestro 14th August 2018

The site owner Mr George Salvestro was interviewed onsite as he is the current resident of the Dwelling on Lot 212. Mr Salvestro indicated that apart from the use of chemicals for normal residential gardening and maintenance activities no broad scale use or application of chemicals or storage of fuels was conducted on the site. Mr Salvestro indicated that he had previously operated a development and construction business prior to retiring

5.1.2 Interview with Mr Ian Piper (Cardno) 1st October 2018

Discussions with Mr Piper confirmed that the excavation areas in Lot 212 of weathered rock was undertaken to win material for the purposed surfacing of existing onsite tracks and use as imported filling on a Saltro development project in Jilliby in the mid 1990's. As such the "quarried area" described by the DP Report was not a commercial quarry with a minor risk of contamination. The excavation process involved the removal of surficial soils to stockpile, which were still evident prior to excavation of the underlying weathered rock profile.

5.2 Review of the Historical Aerial Photos

Cardno has conducted a review of the descriptions and available historical aerial photograph data presented in previous DP Report [1]. Overall, Cardno's historical aerial review was generally consistent with the interpretation and conclusions associated with the data presented in DP Report [1].

Date Reference **Observations** 1954 Black and Onsite: white The 1954 aerial photograph indicates that the site is predominantly vegetated with photography bushland. Offsite: The majority of the properties to the north adjacent to Hue Hue Road appeared to be partially cleared of the bushland vegetation with rural (orchard) land uses identified. Areas adjacent Gorokan Road had been partially cleared of the bushland vegetation, although no orchard or intensive agricultural land use were identified. The area identified as the "Former Cricket Pitch" was cleared and appeared to have a grass surface cover. A dam was identified between the "Former Cricket Pitch" and Gorokan Road. 1965 Black and **Onsite:** white An overview of the 1965 aerial photograph indicates that clearing of bushland photography within the site has occurred compared to the 1954 photograph. Offsite: An orchard land use in the area off Gorokan Road between Warapara and Pirama Roads. Surrounding land uses appeared to have remained relatively unchanged although the density of development in surrounding areas has continued to increase. 1975 Black and **Onsite:** white Further clearing of bushland has occurred compared to the 1961 photograph within Lot 17 DP 870597 (now Lot 173 DP 1212974), and appearing to have a photography grass surface cover (similar to its current condition). Offsite: Several large buildings including four elongated shed were identified to the north west (part of Lot 17 DP870597). The aerial photographs and anecdotal information indicated this property had poultry farm land use. The density of development in surrounding areas has continued to be increase. 1985 Black and Onsite: white An overview of the 1985 aerial photograph indicates that the site had similar photography physical features to the 1975 photograph, Offsite: Additional buildings (probably dwellings) are visible in areas adjacent to Gorokan and Hue Hue Roads. The formerly identified orchard land uses appeared to have generally ceased, although a small number of trees were visible on two of the previously identified parcels of land. 1994 Colour Onsite: photography Generally consistent with the 1985 photograph. Offsite: Generally consistent with the 1985 photograph, although additional buildings (probably dwellings) are visible in areas adjacent to Gorokan and Hue Hue Roads. There is an overall increase in density of development around the site. 2007 Colour Onsite: photography Generally consistent with the 1994 photograph. Offsite: Generally consistent with the 1994 photograph with the exception of the construction of greenhouses to the north of Stage 5-14.

Table 5-1 Douglas Partners Historical Aerial Photos (2007)

The DP review of the available historical aerial photographs and data indicated that no major disturbance was noted within the subject Site with the exception of an excavation area located within Lot 212 DP866437, referred to as "quarried area".

As the DP aerial review was restricted to 2007, Cardno have undertaken aerial review of available Google Earth and Nearmap Imagery post 2007. A summary of the observed site features detailed in the Cardno reviewed aerial imagery are summarised below.

Table 5-2	Aerial Imagery Review	
Date	Reference	Observations Stages 5-14
2010	Colour	Onsite:
	Nearmap	Stage 5-14 generally consists of undeveloped agricultural land. Bushland is located within the southern western portion of the site. Two dams of similar size (0.1 ha) are present along the western boundary of the site, north of the bushland. Trees and shrubs are present along the Mannering Creek line which runs east to west across the northern portion of the site. A concentration of trees and shrubs are also present along the Unnamed Creek that runs south to north through the eastern portion of the site. An internal road runs from the southern boundary of the site to the northern boundary in a north-north west direction.
		Lot 212 DP 866437 comprises of open woodland, with a residential building located in the central area. A cleared area (1.5 ha) exists directly north west of the residential building. Bushells Ridge Road borders the southern boundary of the site.
		Offsite:
		The area predominantly comprises low-density residential development. The Paper Subdivision can be seen situated to the west.
2014	Colour	Onsite:
	Nearmap	Generally consistent with the 2010 photograph detailed above. With the exception of an access track off Bushells Ridge Road from the south to the northern boundary.
		Offsite:
		Generally consistent with the 2010 photograph detailed above.
2016	Colour	Onsite:
	Nearmap	Generally consistent with the 2014 photograph detailed above. With the exception of the construction of the waste water management station. Offsite:
		Generally consistent with the 2014 photograph detailed above. With the exception buildings to the north demolished to accommodate Stage 1-4 road pavements and residential lots.

5.3 Summary of Site History

Based on the available data and review of the Douglas Partners report [1], the subject Site has been predominately used for agricultural (i.e. grazing) purposes and no major disturbance was present with the exception of an excavation area located within Lot 212 DP866437, identified as "quarried area" within the Douglas Partners report [1]. Excluding the identified "quarried area", the areas of concern detailed within the DP report are outside the subject Site.

Historical review indicates that subject site is not located within areas of potential contamination sources and the subject site has a low risk of contamination due to the identified areas located beyond the subject site.

For further information regarding past assessments and available data, refer to the DP Report [1].

6 Criteria for Contamination Assessment

The soil assessment criteria used to evaluate soil analytical results are based on the National Environment Protection Measure (NEPM) Assessment of Site Contamination, 2013 [5]. Table 5A of NEPM Schedule B(1) provides Tier I screening values for contaminants based on the protection of human and environmental health for various land uses.

Based on the proposed use of the site and the proximity of the existing creek, the following criteria have been adopted:

- > Health Investigation Levels (HIL's) "Residential A", includes residential with gardens/accessible soils;
- > Soil Health Screening Levels (HSL) for vapour intrusion recommended for Residential (HSL A);
- Ecological Screening Levels (ESLs) for TPH fractions F1-F4, Benzo(a)Pyrene in soil for Urban Residential and Public Open Space; and
- Ecological Investigation Levels (EILs) for Urban Residential/Public Open Space limits. The thresholds adopted are from Table 1(B)(1) to 1(B)3 NEPM 2013 and are based on pH results of the site soils (4.1), CEC (0.63) and/or % clay content testing (15%). EILs were calculated using 25th percentiles of the ABC data for the 'old suburbs' of Olszowy et al. (1995) as recommended by NEPM (schedule B5c)
- > Aesthetic issues generally relate to the presence of low-concern or non-hazardous inert foreign material (refuse) in soil or fill resulting from human activity. Sites that have been assessed as being acceptable from a human health perspective may still contain such foreign material.

"Investigation levels" or "screening levels" presented in the NEPM are not intended to be interpreted as "maximum permissible levels", "clean up levels" or "safe levels", rather, they are levels at which further investigation or assessment should be undertaken to provide assurance that unacceptable contamination does not occur to an extent that could cause harm or detriment for users of the land. Subsequent assessment on a site-specific basis often results in higher levels being acceptable. However, since the "investigation levels" or "screening level" are generally set at conservatively low levels, they are often taken to be the acceptable levels.

A conservative approach was adopted as stipulated by NEPM [2]. Soils identified during the Site inspection and sampling were silty / sandy clays, silts and sands. Based on the observed soil type/s, the ESL's for coarse soils and HIL's for sand soils have been adopted to follow NEPM [2] guidelines.

Cardno[®]

Chemical	Unit	HIL A & HSL A	EIL UR/POS & ESL UR/POS
Arsenic – As	mg/kg	100	100
Chromium III – Cr III	mg/kg	-	410 ¹
Cadmium – Cd	mg/kg	20	
Copper – Cu	mg/kg	6000	30 ¹
Lead – Pb	mg/kg	300	1100
Nickel – Ni	mg/kg	400	5 ¹
Zinc – Zn	mg/kg	7400	95 ¹
Mercury – Hg	mg/kg	40	-
Endrin	mg/kg	10	-
Heptachlor	mg/kg	6	-
Hexachlorobenzene	mg/kg	10	-
Methoxychlor	mg/kg	300	-
Chlorpyrifos	mg/kg	160	-
Mirex	mg/kg	10	-
DDT	mg/kg	-	180
Total PAH's	mg/kg	300	-
Naphthalene	mg/kg	3	170
Benzene	mg/kg	0.5	50
Toluene	mg/kg	160	85
Ethylbenzene	mg/kg	55	70
Xylene total	mg/kg	40	105
$C_{10} - C_{14}$	mg/kg	-	120
C ₁₀ -C ₁₆	mg/kg	-	120
$C_{16} - C_{34}$	mg/kg	-	300
C ₃₄ -C ₄₀	mg/kg	-	2800
$F1 > C_6 - C_{10}$ (less BTEX)	mg/kg	45	180
$F2 > C_{10} - C_{16}$ (less naphthalene)	mg/kg	110	-
Benzo(a)pyrene	mg/kg	-	0.7

Table 6-1 Health-based and Ecological Assessment Criteria

¹ Values have been adjusted for EIL UR / POS based on tested pH, CEC and clay content values, calculations can be found in **Appendix C.**

7 Investigation Methodology

7.1 Supplementary Contamination Assessment

The site investigation relevant to the SCA was conducted on the 24th of August 2018 by a Geotechnical Engineer from Cardno.

Cardno's contamination assessment comprised the following:

- > A site walkover and visual inspection by a geotechnical engineer from Cardno including site mapping and logging of significant site features.
- Excavation of ten (10) test pits (TP101 TP110) across Stage 5-14 utilising a 3.5 tonne excavator fitted with a 400 mm toothed bucket. Test pits were excavated to a target depth of 0.6 m.
- Excavation of five (5) test pits (TP201- TP205) within the excavated area (0.4 ha) of former Lot 212 DP 866437 utilising a 3.5 tonne excavator fitted with a 400 mm toothed bucket. Test pits were excavated to a target depth of 0.6 m.
- > Samples were collected at three (3) interval depths (0.10 m, 0.25 m & 0.50 m bsl) at each test location
- Samples were collected via a stainless steel trowel following the preparation of a fresh side wall of each test pit and all sampling equipment decontaminated using Decon 90 solution between each sampling event.

7.2 Laboratory Testing

Laboratory testing on selected samples recovered during fieldwork comprised the following:

- Ten (10) samples from Stage 5-14 and five (5) from Lot 212 DP866437 were analysed for Total Recoverable Hydrocarbons (TRH), Benzene, Toluene, Ethyl-benzene, Xylenes and Napthalene) BTEXN, Polyaromatic Hydrocarbons (PAH), organochlorides pesticides (OC), organophosphates (OP), Polychlorinated Biphenyls (PCB) and eight metals (As, Cd, Cr, Cu, Pb, Hg, Ni & Zn).
- > Two (2) sample from Stage 5-14 and five (5) samples from former Lot 212 DP866437 were analysed for the presence of asbestos.
- > One (1) sample from Stage 5-14 to be tested for pH, clay content (%) and CEC.
- > Two (2) duplicate samples were taken from the Site, with one (1) from the Stage 5-14 area and one (1) from the excavated area of former Lot 212 DP866437 were analysed for TRH, BTEX, PAH, OC, OP, PCB and eight heavy metals.
- > One (1) rinsate sample analysed for TRH and BTEX.

Laboratory analysis and testing was carried out on soil samples by SGS Australia Pty Ltd, which holds current accreditation with the National Association of Testing Authorities, Australia (NATA) for the analysis performed.

Results of laboratory testing are in the laboratory reports attached in Appendix C.

7.3 Sampling Methodology and Decontamination Procedures

Environmental sampling was performed according to Cardno standard operating procedures with sampling data recorded on Chain of Custody sheets.

The methodology utilised is as follows:

- > The use and changing of disposable gloves between each sampling event to prevent cross contamination;
- Decontamination of all sampling equipment using a 3% solution of phosphate free detergent (Decon 90) and distilled water prior to each sample being taken;

- > The environmental samples from test pits were collected either, by hand where possible or collected using a stainless steel trowel.
- > Soil samples were placed into glass jars with a Teflon lined lid supplied by SGS laboratories;
- > To minimise the potential for volatile contaminants loss, the glass jars were filled to have zero headspace;
- > Collection of a blind duplicate sample at a frequency of 20% for quality assurance and control (QA/QC);
- > Samples were sent to the laboratory with recommended holding times; and
- > The sample jars were preserved in a chilled esky containing ice immediately after sampling and during transport to the laboratory. Samples were shipped to the laboratory under Chain-of-custody (COC) protocols. The completed COC accompanied the samples during shipment to the laboratory and copy of is provided in **Appendix C**).

The samples were collected at the intrusive testing locations as shown on **Figure 1**, attached in **Appendix A**.

7.4 Quality Control/Quality Assurance

A critical aspect of site investigation is the demonstration of the quality of the data used as the basis for the assessment. This is achieved through a Data Validation process, which includes a review of the following aspects of the data collection process as detailed in QA/QC Report, attached in **Appendix D**.

- > Project Quality Objectives and Plans.
- > Data Representativeness.
- > Data Precision and Accuracy.
- > Laboratory Performance.
- > Data Comparability.
- > Data Set Completeness.

1.1 Laboratory QC and QCI Report Summary

The laboratory selected for undertaking the analysis SGS is NATA accredited for the analysis required, and undertook certain QA/QC requirements to demonstrate the suitability of the data that is obtained. The laboratory is required to undertake and report internal laboratory Quality Control (QC) procedures for all chemical analysis undertaken. The QC testing is required to include:

- > Laboratory duplicate sample analysis at the rate of one duplicate analysis per twenty samples;
- > Method blank at the rate of one method blank analysis per 20 samples;
- > Laboratory control sample at the rate of one laboratory control sample analysis per 20 samples; and
- > Spike recovery analysis at the rate of one spike recovery analysis per 20 samples.

Compliance with the laboratory QA/QC requirements and non-conformance details are discussed in the internal Laboratory QA/QC reports included with the certificates of analysis in Appendix C.

The QA/QC Report received by SGS (in **Appendix C**) highlights outliers flagged in the Quality Control Report and Holding Time breaches and breaches in the Frequency of Quality Control Samples. Review of the QA/QC documentation provided by SGS, indicates that two outliers existed which are summarised in **Table 7-1**.

Table 7-1 Laboratory QA/QC Outlier Summary

Sample ID	Analyte	Description
TP103 0.1	Soil pH	Exceeded holding time – Extraction due 31 st August, 2018. Extracted 3 rd September, 2018. See lab report in Appendix C .

These times are recommendations only and as samples were refrigerated/chilled adequately at all stages between sampling and analysis this non-compliance is not considered significant. Cardno concludes that the data reported by the NATA accredited SGS as presented in this SCA is suitable for interpretative purposes and to make conclusions/recommendations regarding Site contamination.

It was considered that the field and laboratory QA/QC criteria were generally within acceptable limits indicating field sampling, storage, handling, and decontamination procedures and laboratory preparation and analysis procedures were adequate for the purposes of the environmental investigation. Therefore, the data set used as the basis for the soil assessment is considered valid and complete.

8 Areas and Contaminants of Potential Concern

The assessment has identified several potential sources of contamination (and related Contaminants of Potential Concern – COPC), which are summarised in **Table 8-1**. The locations of these areas of interest on the site are identified in **Appendix A**.

Fable 8-1 Site Activities and Potential Contaminants of Concern				
Environmental Assessment Area	Site Activity/Potential Source	Contaminants of Potential Concern	Comments	
	Excavation/borrow pit (0.4 ha area within Lot 212 DP866437)	 Total Petroleum Hydrocarbons (TPHs). BTEX (benzene, toluene, ethyl benzene, and xylenes). Polyaromatic Hydrocarbons (PAHs). 8 heavy metals. 	 Potential for contamination from extraction activities/machinery use. 	
	Vehicle/machinery use	 Total Petroleum Hydrocarbons (TPHs). BTEX (benzene, toluene, ethyl benzene, and xylenes). Polyaromatic Hydrocarbons (PAHs). 	 Potential for contamination from the transport of extracted materials from the excavated site. 	
Lot 212 DP 866437	Storage structures	 Organochlorine and Organophosphate Pesticides (OCP/OPP), Herbicides 	 Potential for contamination from leaks of pesticides/fuels for vehicles machinery 	
		 Total Petroleum Hydrocarbons (TPHs). BTEX (benzene, toluene, ethyl benzene, and xylenes). Polyaromatic Hydrocarbons (PAHs). Foreign materials Asbestos 	 Old vehicles/machinery around the site. 	
	Solid waste	Foreign materialsAsbestos	 Potential building and household refuse scattered throughout surrounding bushland. 	
	Historic farming practices using herbicides and pesticides	 Organochlorine and Organophosphate Pesticides (OCP/OPP/Nutrients/Fertilizers), Herbicides 	 Previous agricultural activities on-site. Surficial soils would most likely be affected. 	
Stage 5-14 (part of Lot 173 DP1212974)	Agriculture operation and maintenance	 Total Petroleum Hydrocarbons (TPHs). BTEX (benzene, toluene, ethyl benzene, and xylenes). Polyaromatic Hydrocarbons (PAHs). 8 heavy metals. Asbestos 	 Potential exists for fuels and chemicals used in the operation and maintenance of agricultural operations. The presence of contamination would likely be associated with localised spills associated with farm vehicles and road traffic. 	

9 Laboratory Analytical Results

9.1 Analytical Tables

Analytical testing was carried out on soil samples using SGS Australia Pty Ltd, which holds current accreditation with the National Association of Testing Authorities, Australia (NATA) for all testing undertaken. All testing was undertaken within the terms of their accreditation. Copies of the testing laboratory reports are shown in **Appendix C**. The results of laboratory analysis for inorganic and organic contaminants in the soil samples are summarised in the analytical comparison tables attached in **Appendix C**.

9.2 8 Heavy Metals

The concentration of metals within the samples tested were below the Residential A (HILs) threshold limits, with the exception of TP203 0.4-0.5.

Results at TP203 0.4-0.5 indicated an exceedance of zinc (Zn) (150 mg/kg) above the calculated threshold limits (95mg/kg) as detailed in NEPM for the Assessment of Site Contamination, 2013 [4] for Urban Residential/Public Open Space (EILs). In accordance with NEPM [2], the following was calculated:

- > TP201-TP205 UCLmean = 102.1 mg/kg
- > TP201-TP205 standard deviation = 48.5 mg/kg

Summary statistics can be found in Table 9-1.

Table 9-1	TP201-TP205 Zinc Summary Statistics	
Zn		Results
Number o	f Samples	6
Investigati	ion Level	95 mg/kg
Minimum		11 mg/kg
Maximum		150 mg/kg
Range		139 mg/kg
Arithmetic	Mean	62.1 mg/kg
95% Uppe	er Confidence Level	102.1 mg/kg
Standard	Deviation	48.5 mg/kg

9.3 Total Petroleum Hydrocarbons (TPH)

TPH concentrations in all samples were below the Residential A (HSLs) and Urban Residential and Public Open Space (ESLs) threshold limits.

9.4 Benzene, Toluene, Ethylbenzene, Xylene and Naphthalene (BTEXN)

BTEXN concentrations in all samples were below the Residential A (HSLs) and Urban Residential and Public Open Space (ESLs) threshold limits.

9.5 Polycyclic Aromatic Hydrocarbon (PAH)

PAH's concentrations in all samples were below the Residential A and Urban Residential and Public Open Space (ESLs) threshold limits.

9.6 Organophosphorous and Organochlorine (OP/OC) & Polychlorinated Biphenyls (PCB) Compounds

OC/OP/PCB concentrations returned values below the reporting limits in all samples and were below the Residential A (HSLs) and Urban Residential and Public Open Space (EILs) threshold limits.

9.7 Asbestos Identification in Soils

No asbestos fibres were detected in any sample analysed. Potential asbestos bearing materials were not observed during the Site inspection or within intrusive field investigation.

10 Conceptual Site Model

10.1.1 General

Generally, a conceptual site model (CSM) provides an assessment of the fate and transport of COPCs relative to site-specific subsurface conditions with regard to their potential risk to human health and the environment. The CSM takes into account site-specific factors including:

- > Source(s) of contamination,
- Identification of contaminants of potential concern (COPCs) associated with past (and present) source(s),
- > Vertical, lateral and temporal distribution of COPCs,
- > Actual or potential receptors considering both current and future land use for both the site and adjacent properties, and any sensitive ecological receptors.

10.1.2 Source of Contamination

A small (approx. 7 m³) stockpile of material in the borrow pit area within Lot 212 DP 866437 (onsite).

10.1.3 Media Potentially Impacted

The media impacted by contamination includes:

> Soil.

10.1.4 Summary of Contaminated Exposures

A summary of the potential source-pathway-receptor (pollutant) linkages with respect to ecological health is found in **Table 10-1**. This indicates the potentially active pathways of exposure of people to contamination at the site.

Table 10-1	Summary of Contaminated Exposures
------------	-----------------------------------

Sources	Pathways	Receptors
Zn concentration in stockpile (Lot 212	Leaching from stockpile to surrounding soil	 Ecological/natural resources
DP 866437)	Dispersion via erosion	 Ecological/natural resources
	Dispersion via wind	 Ecological/natural resources

10.1.5 Data Gaps and Uncertainties

Based on the inspection, intrusive sampling, comparison of the analytical testing undertaken to threshold limits detailed in NEPM [5], the potential contamination at this site is not considered to present a significant constraint on the proposed development of the site. However, it must be noted that the number of sampling locations recommended by the NSW EPA Sampling Design Guidelines (1995) for a site of this size was reduced with limited intrusive sampling undertaken to support the results or conclusions of the previous DP Report.

The following data gaps and uncertainties regarding the assessment are detailed below:

> Limited intrusive sampling was undertaken;

> No groundwater samples were collected however; groundwater contamination is considered unlikely.

11 Discussions

This report presents the findings of the SCA undertaken on Stage 5-14 (part of Lot 173 DP1212974) and Lot 212 866437, Bushells Ridge Road, Wyee, NSW. The assessment aimed to address the objectives outlined in **Section 1.2** of this report and are listed below:

- Provide additional environmental data to assess potential issues previously identified in Douglas Partners Preliminary Site Investigation and Contamination Assessment Report (JN. 41810, date. July 2009) [1].
- > The potential for the previous site activities or activities on adjacent sites to act as a source of contamination.
- > The nature and location of contamination of soil on-site and potential for contamination extending off-site.
- > Determine the sites suitability for the proposed use (urban residential)
- > Assess the need for any further assessment or remedial works before definitive conclusions could be made on the suitably of the site for use.

11.1 Potential Acid Sulfate Soil

Douglas Partners undertook a preliminary ASS assessment (DP Report [1]) and concluded that ASS soils were unlikely to be present within the greater Radcliffe, Wyee development and more specifically Stages 5-14 and Lot 212 DP 866437. The conclusion was based on field screening results, risk maps and existing site elevations.

11.2 Soil Contamination

A limited intrusive sampling and testing regime has been undertaken to provide this supplementary assessment to the DP Report [1] and assess potential issues identified by the desktop study.

11.2.1 Borrow Pit Area (Lot 212 DP 866437)

As the Site was not subject to commercial quarrying activities described by the DP Report [1], risk of contamination was considered to be decreased.

No indication of staining or olfactory indication of contamination, nor fibrous sheeting or foreign materials were observed within the test pits or the surface of the Site at the time of inspection.

With the exception of Foreign materials were found in one test pit (TP203) within Lot 212 DP 866437, which was comprised of fill material. Small amounts (<12% of the sample) of metal tubing, tile and brick fragments were present. However, no olfactory indication nor fibrous sheeting was noted. Appraisal of the laboratory results indicates the absence of asbestos fibres within the samples analysed.

Based on the findings of this SCA, site conditions and comparison of the analytical results of the testing undertaken to HSL and HIL threshold limits (Residential A) detailed in National Environment Protection Measure (NEPM) for the Assessment of Site Contamination, 2013 [5] no indication of gross contamination has been identified on the site.

Screening values for EILs were calculated according to site specific conditions in accordance with NEPM [5]) for Urban Residential and Public Open Space guidelines. With the exception of one (1) exceedance at sample location TP203 0.4-0.5 (150 mg/kg), which exceeded the calculated threshold of 95 mg/kg.

In accordance with NEPM [5] the 95%UCL_{mean} (102.1 mg/kg) and standard deviation (48.5 mg/kg) were calculated. As the standard deviation is more than 50% of the calculated EIL Zn level (95 mg/kg), the - stockpile is considered to be non-representative of site conditions and should be removed prior to development.

Based on the field assessment, and laboratory results, following removal of this stockpile and exclusion of the associated data from the analysis, Cardno considers that Lot 212 DP 866437 does not represent a risk to human or environmental health, however it is recommended that if redevelopment is to occur at the site, the

soil located at TP203 is classified and transported off-site to a licenced landfill or re-used on-site at a depth of greater than 2 m.

11.2.2 Stage 5-14 (Lot 173 DP 1212974)

No indication of staining or olfactory indication of contamination, nor fibrous sheeting or foreign materials were observed within the test pits or the surface of the Site at the time of inspection.

Based on the findings of this SCA, site conditions and comparison of the analytical results of the testing undertaken to HSL and HIL threshold limits (Residential A) detailed in National Environment Protection Measure (NEPM) for the Assessment of Site Contamination, 2013 [5] no indication of gross contamination has been identified on the site.

Based on the findings of this SCA, site conditions and comparison of the analytical results of the testing undertaken to ESL and EIL threshold limits (Urban Residential/Public Open Space) detailed in National Environment Protection Measure (NEPM) for the Assessment of Site Contamination, 2013 [5] no indication of gross contamination has been identified on the site. Cardno considers that Lot 173 DP 1212974 has no evidence of contamination that should preclude the site from the proposed development in Stages 5-14.

12 Conclusions and Recommendations

12.1 Conclusions

Following on from the original DP report, broad scale testing was undertaken across the Site. Based on site history, current site inspection, knowledge of the site and the limited site investigation, no indication of gross contamination was identified. The isolated stockpile located at Lot 212 DP 866437 appears to be the only source of contamination on the Site. Therefore, the Site is considered to be low risk of potential contamination based on investigation findings and the identified data gaps.

12.2 Recommendations

Based on the conclusions above, Cardno recommends:

- > Any soil proposed to be excavated and transported off site for disposal should be classified in accordance with the NSW EPA Waste Classification Guidelines.
- If construction occurs at Lot 212 DP 866437, it is recommended that the contaminated stockpile (Figure 1, Appendix A) should be classified and transported off site for disposal in accordance with the NSW EPA Waste Classification Guidelines.
- > Minor inert foreign materials were observed across the site. The removal of these materials can be undertaken at a stage by stage basis.
- > Validation soil sampling may be required if deemed necessary
- > An unexpected finds protocol should be developed and adopted to address any potential contamination that may arise during development.
- > Confirmation testing of asbestos within structures or a hazardous material assessment be conduct prior to any demolition.

13 Limitations

This investigation has been undertaken in general accordance with the current "industry standards" for a site investigation for the purpose, objectives and scope identified in this report. These standards are set out in:

- National Environment Protection Council (NEPC) (1999) National Environment Protection (Assessment of Site Contamination) Measure, as amended (registered on 15 May 2013) [5]. This is referred to from here on as "the NEPM" or "NEPM (2013)".
- > Standards Australia (2005) AS4482.1- 2005: Guide to the investigation and sampling of sites with potentially contaminated soil Part 1: Non-volatile and semi-volatile compounds. [6].
- > NSW EPA "Guidelines for Consultants Reporting on Contaminated Sites" [7].

The agreed scope of this investigation has been limited for the current purposes of the Client. The investigation may not identify contamination occurring in all areas of the site, or occurring after sampling was conducted. Subsurface conditions may vary considerably away from the sample locations where information has been obtained.

This site investigation report is not any of the following:

- > An Environmental Audit Report as defined under NSW Site Auditor Scheme [8].
- > A detailed site investigation (DSI) report sufficient for an Environmental Auditor to be able to conclude a statutory or non-statutory environmental audit.
- > A geotechnical report, and the bore logs or test pit logs may not be sufficient as the basis for geotechnical advice.
- > A detailed hydrogeological assessment or an assessment of groundwater contaminants potentially arising from other sites or sources nearby.
- > A waste classification report of soil analytical results from the Site.
- > A total assessment of the site to determine suitability of the entire parcel of land at the site for one or more of the beneficial uses of land set out in State Environmental Protection Policy (Prevention and Management of Contamination of Land) and its variation.

14 References

- [1] Douglas Partners, "Report on Preliminary Geotechnical and Contamination Assessment," July 2009.
- [2] NSW Government, "Lake Macquarie Local Environmental Plan Land Zoning," 2014.
- [3] NSW Government, "Lake Macquarie Local Environmental Plan Flood Planning," 2014.
- [4] NSW Government, "Lake Macquarie Local Environmental Plan Acid Sulfate Soils Risk map," 2014.
- [5] National Environment Protection (Assessment of Site Contamination) Measure 1999, "Schedule B1 Guidelines on Investigation Levels For Soil and Groundwater," National Environment Protection Council (NEPC), 16 May 2013.
- [6] Standards Australia, "Australian Standard Guide to the investigation and sampling of sites with potentially contamainted soils PArt one: Non-volatile and semi-volatile compounds," Standards Australia, 2005.
- [7] NSW EPA, ""Contaminated Sites: Guidelines for Consults on Contaminated Sites," NSW Environmental Protection Authority, 1997.
- [8] NSW DEC, "Contaminated Sites: Guidelines for the NSW Site Auditor Scheme (3rd Edition)," Department of Environment and Conservation NSW, 2017.

FIGURES

APPENDIX

LOGS AND EXPLANATORY NOTES

Explanatory Notes

The methods of description and classification of soils and rocks used in this report are based on Australian Standard AS1726-2017 Geotechnical Site Investigations. Material descriptions are deduced from field observation or engineering examination, and may be appended or confirmed by in situ or laboratory testing. The information is dependent on the scope of investigation, the extent of sampling and testing, and the inherent variability of the conditions encountered.

Subsurface investigation may be conducted by one or a combination of the following methods.

Method	
Test Pitting: exc	avation/trench
BH	Backhoe bucket
EX	Excavator bucket
R	Ripper
Н	Hydraulic Hammer
Х	Existing excavation
Ν	Natural exposure
Manual drilling: I	hand operated tools
HA	Hand Auger
Continuous sam	ple drilling
PT	Push tube
PS	Percussion sampling
SON	Sonic drilling
Hammer drilling	
AH	Air hammer
AT	Air track
Spiral flight auge	er drilling
AS	Auger screwing
AD/V	Continuous flight auger: V-bit
AD/T	Continuous spiral flight auger: TC-Bit
HFA	Continuous hollow flight auger
Rotary non-core	drilling
WB	Washbore drilling
RR	Rock roller
Rotary core drilli	ing
PQ	85mm core (wire line core barrel)
HQ	63.5mm core (wire line core barrel)
NMLC	51.94mm core (conventional core barrel)
NQ	47.6mm core (wire line core barrel)
DT	Diatube (concrete coring)

Sampling is conducted to facilitate further assessment of selected materials encountered.

Sampling method Soil sampling В Bulk disturbed sample D Disturbed sample С Core sample ES Environmental soil sample SPT Standard Penetration Test sample U Thin wall tube 'undisturbed' sample Water sampling WS Environmental water sample

Field testing may be conducted as a means of assessment of the in situ conditions of materials.

|--|

SPT	Standard Penetration Test		
HP/PP	Hand/Pocket Penetrometer		
Dynamic F	Penetrome	eters (blows per noted increment)	
	DCP	Dynamic Cone Penetrometer	
	PSP	Perth Sand Penetrometer	
MC	Moisture	Moisture Content	
VS	Vane Shear		
PBT	Plate Bearing Test		
IMP	Borehole Impression Test		
PID	Photo Ionization Detector		

If encountered, refusal (R), virtual refusal (VR) or hammer bouncing (HB) of penetrometers may be noted.

The quality of the rock can be assessed by the degree of natural defects/fractures and the following.

Rock q	Rock quality description		
TCR	Total Core Recovery (%)		
	(length of core recovered divided by the length of core run)		
RQD	Rock Quality Designation (%)		
	(sum of axial lengths of core greater than 100mm long divided by the length of core run)		

Notes on groundwater conditions encountered may include.

Groundwater	
Not Encountered	Excavation is dry in the short term
Not Observed	Water level observation not possible
Seepage	Water seeping into hole
Inflow	Water flowing/flooding into hole

Perched groundwater may result in a misleading indication of the depth to the true water table. Groundwater levels are also likely to fluctuate with variations in climatic and site conditions.

Notes on the stability of excavations may include.

Excavation conditions		
Stable	No obvious/gross short term instability noted	
Spalling	Material falling into excavation (minor/major)	
Unstable	Collapse of the majority, or one or more face of the excavation	

Explanatory Notes: General Soil Description

The methods of description and classification of soils used in this report are based on Australian Standard AS1726-2017 Geotechnical Site Investigations. In practice, a material is described as a soil if it can be remoulded by hand in its field condition or in water. The dominant component is shown in upper case, with secondary components in lower case. In general descriptions cover: soil type, plasticity or particle size/shape, colour, strength or density, moisture and inclusions.

In general, soil types are classified according to the dominant particle on the basis of the following particle sizes.

Soil Classification		Particle Size (mm)
CLAY		< 0.002
SILT		0.002 0.075
SAND	fine	0.075 to 0.21
	medium	0.21 to 0.6
	coarse	0.6 to 2.36
GRAVEL	fine	2.36 to 6.7
	medium	6.7 to 19
	coarse	19 to 63
COBBLES		63 to 200
BOULDERS		> 200

Soil types may be qualified by the presence of minor components on the basis of field examination methods and/or the soil grading.

Terminology	In coarse	In fine soils	
reminology	% fines	% coarse	% coarse
Trace	≤5	≤15	≤15
With	>5, ≤12	>15, ≤30	>15, ≤30

The strength of cohesive soils is classified by engineering assessment or field/lab testing as follows.

Strength	Symbol	Undrained shear strength
Very Soft	VS	≤12kPa
Soft	S	12kPa to ≤25kPa
Firm	F	25kPa to ≤50kPa
Stiff	St	50kPa to ≤100kPa
Very Stiff	VSt	100kPa to ≤200kPa
Hard	Н	>200kPa

Cohesionless soils are classified on the basis of relative density as follows.

Relative Density	Symbol	Density Index
Very Loose	VL	<15%
Loose	L	15% to ≤35%
Medium Dense	MD	35% to ≤65%
Dense	D	65% to ≤85%
Very Dense	VD	>85%

The plasticity of cohesive soils is defined by the Liquid Limit (LL) as follows.

Plasticity	Silt LL	Clay LL
Low plasticity	≤ 35%	≤ 35%
Medium plasticity	N/A	> 35% ≤ 50%
High plasticity	> 50%	> 50%

The moisture condition of soil (*w*) is described by appearance and feel and may be described in relation to the Plastic Limit (PL), Liquid Limit (LL) or Optimum Moisture Content (OMC).

Moistu	Moisture condition and description		
Dry	Cohesive soils: hard, friable, dry of plastic limit. Granular soils: cohesionless and free-running		
Moist	Cool feel and darkened colour: Cohesive soils can be moulded. Granular soils tend to cohere		
Wet	Cool feel and darkened colour: Cohesive soils usually weakened and free water forms when handling. Granular soils tend to cohere		

The structure of the soil may be described as follows.

Zoning	Description
Layer	Continuous across exposure or sample
Lens	Discontinuous layer (lenticular shape)
Pocket	Irregular inclusion of different material

The structure of soil layers may include: defects such as softened zones, fissures, cracks, joints and root-holes; and coarse grained soils may be described as strongly or weakly cemented.

The soil origin may also be noted if possible to deduce.

Soil origin and description			
Fill	Anthropogenic deposits or disturbed material		
Topsoil	Zone of soil affected by roots and root fibres		
Peat	Significantly organic soils		
Colluvial	Transported down slopes by gravity/water		
Aeolian	Transported and deposited by wind		
Alluvial	Deposited by rivers		
Estuarine	Deposited in coastal estuaries		
Lacustrine	Deposited in freshwater lakes		
Marine	Deposits in marine environments		
Residual soil	Soil formed by in situ weathering of rock, with no structure/fabric of parent rock evident		
Extremely weathered material	Formed by in situ weathering of geological formations, with the structure/fabric of parent rock intact but with soil strength properties		

The origin of the soil generally cannot be deduced solely on the appearance of the material and the inference may be supplemented by further geological evidence or other field observation. Where there is doubt, the terms 'possibly' or 'probably' may be used

Explanatory Notes: General Rock Description

The methods of description and classification of rocks used in this report are based on Australian Standard AS1726-2017 Geotechnical Site Investigations. In practice, if a material cannot be remoulded by hand in its field condition or in water, it is described as a rock. In general, descriptions cover: rock type, grain size, structure, colour, degree of weathering, strength, minor components or inclusions, and where applicable, the defect types, shape, roughness and coating/infill.

Rock types are generally described according to the predominant grain or crystal size, and in groups for each rock type as follows.

Rock type	Groups
Sedimentary	Deposited, carbonate (porous or non), volcanic ejection
Igneous	Felsic (much quartz, pale), Intermediate, or mafic (little quartz, dark)
Metamorphic	Foliated or non-foliated
Duricrust	Cementing minerology (iron oxides or hydroxides, silica, calcium carbonate, gypsum)

Reference should be made to AS1726 for details of the rock types and methods of classification.

The classification of rock weathering is described based on definitions in AS1726 and summarised as follows.

Term and symbol		Definition
Residual Soil	RS	Soil developed on rock with the mass structure and substance of the parent rock no longer evident
Extremely weathered	XW	Weathered to such an extent that the rock has 'soil-like' properties. Mass structure and substance still evident
Distinctly weathered	DW	The strength is usually changed and may be highly discoloured. Porosity may be increased by leaching, or decreased due to deposition in pores. May be distinguished into MW (Moderately Weathered) and HW (Highly Weathered).
Slightly weathered	SW	Slightly discoloured; little or no change of strength from fresh rock
Fresh Rock	FR	The rock shows no sign of decomposition or staining

The rock material strength can be defined based on the point load index as follows.

Term and symbol		Point Load Index I₅50 (MPa)	
Very Low	VL	0.03 to 0.1	
Low	L	0.1 to 0.3	
Medium	Μ	0.3 to 1.0	
High	Н	1.0 to 3	
Very High	VH	3 to 10	
Extremely High	EH	> 10	

It is important to note that the rock material strength as above is distinct from the rock mass strength which can be significantly weaker due to the effect of defects. A preliminary assessment of rock strength may be made using the field guide detailed in AS1726, and this is conducted in the absence of point load testing.

The defect spacing measured normal to defects of the same set or bedding, is described as follows.

Definition	Defect Spacing (mm)	
Thinly laminated	< 6	
Laminated	6 to 20	
Very thinly bedded	20 to 60	
Thinly bedded	60 to 200	
Medium bedded	200 to 600	
Thickly bedded	600 to 2000	
Very thickly bedded	> 2000	

Terms for describing rock and defects are as follows.

Defect Terms			
Joint	JT	Sheared zone	SZ
Bedding Parting	BP	Seam	SM
Foliation	FL	Vein	VN
Cleavage	CL	Drill Lift	DL
Crushed Seam	CS	Handling Break	HB
Fracture Zone	FZ	Drilling Break	DB

The shape and roughness of defects in the rock mass are described using the following terms.

Planarity		Roughness	
Planar	PR	Very Rough	VR
Curved	CU	Rough	RF
Undulose	UN	Smooth	S
Irregular	IR	Slickensided	SL
Stepped	ST	Polished	POL
Discontinuous	DIS		

The coating or infill associated with defects in the rock mass are described as follows.

Infill and Coating	J	
Clean	CN	
Stained	SN	
Carbonaceous	Х	
Minerals	MU	Unidentified mineral
	MS	Secondary mineral
	KT	Chlorite
	CA	Calcite
	Fe	Iron Oxide
	Qz	Quartz
Veneer	VNR	Thin or patchy coating
Coating	СТ	Infill up to 1mm

Graphic Symbols Index

Cardno [®]			TEST PIT LOG SHEE										
Client: Wyee Land Pty Ltd Project: Radcliffe, Wyee Deve	lopement		Hole No: TP00 ²										
Location: Bushells Ridge Road	, Bushells	Job No: 82219014	Sheet: 1 of										
Bidge Position: See attached plan		Angle from Horizontal: -90°	Surface Elevation:										
Machine Type: 5 tonne Excavator Excavation Dimensions:		Excavation Method: 400mm to	Contractor: Cardno										
Date Excavated: 23/8/18		Logged By: HS	Checked By: GA										
Excavation Sampling & Tes	ting	Material Descriptio											
	DCP Ê	ç											
	DCP (blows per 150 mm) 1 3 6 12	SOIL TYPE, plasticity or particle characteristic, colour, secondary and minor components ROCK TYPE, grain size and type, colour, fabric & texture, strength, weathering, defects and structure	With the second										
D 0.10 - 0.20 m	لد علد علد علد علد ع لد علد علد علد علد علد علد علد علد علد علد علد علد علد علد	Silty SAND: fine to medium grained, brown, low plasticity silt, trace rootlets	M TOPSOIL										
		CL	M (>PL) VSt to H										
D 2.40 - 2.50 m	- - - - ++++-2.5	2.00m SAND: fine to medium grained, yellow-brown, trace low plasticity silt SW 2.50m TERMINATED AT 2.50 m Target depth	* M M W										
METHOD PENETI EX Excavator bucket VE R Ripper HA Hand auger F FI PT Push tube H SON Sonic drilling H AH Air hammer WATER AD/V Solid flight auger: V-Bit VE AD/V Solid flight auger: TC-Bit IFA	I I I	HP - Hand/Pocket Penetrometer D - I DCP Dynamic Cone Penetrometer U - ES - PSP Perth Sand Penetrometer U - I MC Moisture Content MOISTUR PBT Plate Bearing Test D - I IMP Borehole Impression Test M - I PID Photoionisation Detector W - V VS Vane Shear; P=Peak, PL - FL	Bulk disturbed sample VS - Very Soft Disturbed sample S - Soft Environmental sample F - Firm Thin wall tube 'undisturbed' St - Stiff RE VSt - Very Stiff Dry RELATIVE DENSITY Moist VI -										
Refer to explanatory notes for details of abbreviations and basis of descriptions	CAR	DNO (NSW/ACT) PTY LTD											
() C	arc	lno°							ΤE	ST PIT LOG SHEET	
---	--	---	--	---	--	--	---	----------------	--	-----------------------	------------------------------------	-----------------------------------	--
Clie Pro				e Land Pty Ltd liffe, Wyee De		nent					Η	ole No: TP002	
Loc	atio	on:	Bush	ells Ridge Ro					Job No: 82219014			Sheet: 1 of 1	
				ched plan onne Excavato					Angle from Horizontal: -90° Excavation Method: 400mm too			e Elevation:	
				sions:)(Excavation method. 400min too			ctor: Cardno	
				3/8/18					Logged By: HS			ed By: GA	
E>	kcava	ation		Sampling &	Festing				Material Description			I	
Method	Resistance	Stability	Water	Sample or Field Test	DCP (blows per 150 mm	·	Graphic Log	Classification	SOIL TYPE, plasticity or particle characteristic, colour, secondary and minor components ROCK TYPE, grain size and type, colour, fabric & texture, strength, weathering, defects and structure	Moisture Condition	Consistency Relative Density	STRUCTURE & Other Observations	
						-	لك علك علك علك علك ع لك علك علك علك علك ع		Silty SAND: fine to medium grained, grey-brown, low plasticity silt, trace rootlets			TOPSOIL	
				D 0.20 - 0.30 m		-	لله عله عله عله عله عله عله عله عله عله لله عله عله عله عله عله			м		-	
						- 0.5 -			0.30m Silty CLAY: low to medium plasticity, brown-grey mottled orange			ALLUVIUM - -	
				B 0.80 - 1.10 m		- 1.0		CL- CI		M (>PL)	VSt to H	-	
EX		Stable			 VR	- 1.5						-	
						-		CL	Sandy CLAY: low plasticity, pale grey mottled orange, fine to medium grained sand	M (>PL)	н		
			2.4m			- 2.0 - - -		SC	Clayey SAND: fine to medium grained, grey mottled orange, low plasticity clay	M	D		
			inflow encountered at 2			2.5- - - -	<u> </u>		2.50m TERMINATED AT 2.50 m Target depth			-	
X∃ WE EX R HAA PTC AH PSC	F F N S S V V S S V V S S V V S S V V S S V V S S V V S S V V S S V V S S V V S S V S S V S S V S S V S S V S S V S S V S S S V S S S V S S S V S S S V S	Excavato Ripper Hand au Push tub Sonic dr Air hamr Percussi Short sp Solid flig	ger be lling ner on sam iral aug ht aug ht aug ight au re drillir	et VE F H VH er xr: V-Bit ger	Easy Firm Hard Very Hard (R TER Water shown water i	sy (No Resistance) SPT - Standard Penetration Test HP - Hand/Pocket Penetrometer DCP - Dynamic Cone Penetrometer MC - Moisture Content Wn B - Bulk disturbed sample D - Disturbed sample S - Environmental sample U - Thin wall tube 'undisturbed' VS - Very Soft S - Soft F - Firm VS - Very Soft S - Soft H - Hard trd (Refusal) PSP - Perth Sand Penetrometer MC - Moisture Content PBT - Plate Bearing Test WN MOISTURE D - Dry M - Moist VS - Very Soft S - Soft VS - Very Stiff H - Hard trd Level on Date Wn IMP - Borehole Impression Test WN M - Moist W - Wet Moist VL - Very Loose L - Loose							
Ref abb	fer to e previati	explanator ions and b	y notes f asis of d	or details of escriptions			CAR		NO (NSW/ACT) PTY LTD			1	

		Ca	aro	lno°							TE	ST PIT LOG SHEET			
Clier Proj∉	ect:	I	Radc	Land Pty Ltd liffe, Wyee De	velopen						Η	ole No: TP003			
Loca Rida		1: I	Bush	ells Ridge Ro ched plan	ad, Busl	nells			Job No: 82219014			Sheet: 1 of 1			
				ched plan onne Excavate					Angle from Horizontal: -90° Excavation Method: 400mm too			e Elevation:			
				sions:	<i>"</i>				Excavation Method. 400min too			ctor: Cardno			
				3/8/18					Logged By: HS			ed By: GA			
Exc	avati	ion		Sampling &	Festing				Material Description			-			
q	lce	~			DCP (blows	E E	υ	tion	SOIL TYPE, plasticity or particle characteristic,		c c				
Method	Resistance	Stability	Water	Sample or Field Test	1 3 6 12	·	Graphic Log	Classification	colour, secondary and minor components ROCK TYPE, grain size and type, colour, fabric & texture, strength, weathering, defects and structure	Moisture Condition	Consistency Relative Density	STRUCTURE & Other Observations			
						-	لك على على على على على لك على على على على على لك على على		Sitty SAND: fine to medium grained, grey-brown, low plasticity silt, trace rootlets 0.15m	м		TOPSOIL			
						-		sw	SAND: fine to medium grained, orange-yellow	м	L	ALLUVIUM			
						- - 0.5 - -		CL	0.40m Sandy Silty CLAY: low plasticity, brown-grey, fine to medium sand	M (>PL)	St				
						- 1.0			0.90m Sandy CLAY: medium plasticity, pale grey mottled red, fine to medium grain sand			RESIDUAL SOIL			
EX		Stable	t Encountered								St				
		S	Not			- 1.5		СІ		M (>PL)					
						-2.0			As above, becomes pale grey mottled yellow		н				
						- - 2.5-			2.50m TERMINATED AT 2.50 m						
						-			Target depth						
MET EX R HA PT SON AB PS AS AD/1 HFA WB RR	Rip Ha Pu Air Pe Sh / So Hc Wa	cavator pper and aug ish tub pnic dril hamm ercussic port spir blid fligh	ler e er on sam ral auge of auge of auge ght auge ght auge	tt VE F H VH pler WA er X- r: V-Bit r: TC-Bit ger	IETRATION Very Easy (N Easy Firm Hard Very Hard (R TER Water shown water i water o	^{tefusal)} Level on		S F M F	PT - Standard Penetration Test B - B IP - Hand/Pocket Penetrometer D - D ICP - Dynamic Cone Penetrometer U - T SP - Perth Sand Penetrometer U - T IC - Moisture Content MOISTUR BT - Plate Bearing Test D - D ID - Plotoionisation Detector W - W S - Vane Shear; P=Peak, L - D	Denetrometer D - Disturbed sample Penetrometer ES - Environmental sample netrometer U - Thin wall tube 'undisturbed' ent MOISTURE Test D - Dry ession Test M - Moist n Detector W - Wet =Peak, PL - Plastic limit upcarrende (PD) LL - Liquid limit					
Refer abbre	to exp viation	planatory ns and ba	notes fo	or details of escriptions			CAR	RDI	NO (NSW/ACT) PTY LTD			VD - Very Dense			

												ST PIT LOG SHEET
	ject:		Rado	E Land Pty Ltd Liffe, Wyee De	velopeme						H	ole No: TP004
	ation	1: • See	Busr	nells Ridge Ro ched plan	ad, Busne	lis			Job No: 82219014 Angle from Horizontal: -90°		Surfac	Sheet: 1 of 1 e Elevation:
				onne Excavato	or				Excavation Method: 400mm tool			
Exc	avati	ion D	imer	nsions:							Contra	ctor: Cardno
			ed: 2	23/8/18					Logged By: HS		Check	ed By: GA
Ex	cavati	ion		Sampling & T		-		-	Material Description			
Method	Resistance	Stability	Water	Sample or Field Test	DCP (blows per 150 mm)	Depth (m)	Graphic Log	Classification	SOIL TYPE, plasticity or particle characteristic, colour, secondary and minor components ROCK TYPE, grain size and type, colour, fabric & texture, strength, weathering, defects and structure	Moisture Condition	Consistency Relative Density	STRUCTURE & Other Observations
							ليد عليد عليد عليد عليد ع ليد عليد عليد عليد عليد ع عليد عليد عليد عليد عليد ع		Silty SAND: fine to medium grained, grey-brown, low plasticity silt, trace rootlets	м		TOPSOIL
								sw	0.20m SAND: fine to medium grained, orange-yellow	м	L to MD	ALLUVIUM
				B 0.60 - 0.90 m		-0.5			0.40m Silty CLAY: medium plasticity, brown-orange mottled red			RESIDUAL SOIL
											St	
						- 1.0			As above, becomes pale grey with lithorelics (siltstone)			
EX		Stable	Not Encountered									
		Sta	Not E									
						- 1.5		СІ		M (>PL)		
											VSt	
						-2.0						
¥					- - 	-2.5			2.50m TERMINATED AT 2.50 m Target depth			
ex R HA PT SO AH	Rij Ha Pu N So Air	cavato pper and aug ish tub nic dril	ger e ling ier	et VE E F H VH	ETRATION Very Easy (No F Easy Firm Hard Very Hard (Refu		ce)	S F F N	IP - Hand/Pocket Penetrometer D - District Signal DCP - Dynamic Cone Penetrometer ES - Er VSP - Perth Sand Penetrometer U - Th MC - Moisture Content MOISTURE	ilk disturb sturbed sa ivironmen in wall tul	ample tal sampl	e S - Soft F - Firm
PS AD AD HF WB RR	Sh /V So /T So A Ho S Wa		ral aug nt auge nt auge ght au e drillir	ler er: V-Bit er: TC-Bit ger	Water Le water inflo water out	DW	Date	F	B=Baadwal (uncertracted kDa) LL - Lic	bist	ntent	RELATIVE DENSITY VL - Very Loose L - Loose MD - Medium Dense D - Dense VD - Very Dense
				or details of lescriptions			CAF	RD	NO (NSW/ACT) PTY LTD			

C		C	arc	Ino °							ΤE	ST PIT LOG SHEET
Clie Pro				e Land Pty Ltd liffe, Wyee De		nent					Η	ole No: TP005
Loc	atio	n: I	Bush	nells Ridge Ro					Job No: 82219014			Sheet: 1 of 1
				ched plan	n r				Angle from Horizontal: -90° Excavation Method: 400mm too			e Elevation:
				isions:	л 							ctor: Cardno
Date	e Ex	cavat	ed: 2	23/8/18					Logged By: HS		Check	ed By: GA
Ex	cava	tion		Sampling &	Testing				Material Description			1
Method	Resistance	Stability	Water	Sample or Field Test	DCP (blows per 150 mm)	Depth (m)	Graphic Log	Classification	SOIL TYPE, plasticity or particle characteristic, colour, secondary and minor components ROCK TYPE, grain size and type, colour, fabric & texture, strength, weathering, defects and structure	Moisture Condition	Consistency Relative Density	STRUCTURE & Other Observations
•						-	لك علك علك علك علك ع لك علك علك علك علك علك علك علك علك علك علك علك		Sitty SAND: fine to medium grained, grey-brown, low plasticity silt, trace rootlets	D		TOPSOIL
				B 0.40 - 0.70 m D 0.40 - 0.70 m				CL	0.30m Sandy CLAY: low plasticity, brown-orange, fine to medium grain sand	M (>PL)	St	RESIDUAL SOIL
EX		Stable	Not Encountered			- - 1.0 -			1.20m Silty CLAY: medium plasticity, pale grey mottled red			-
				D 1.40 - 1.60 m		- 1.5 - -		CI	As above, becomes with lithorelics (siltstone)	M (>PL)	VSt	-
						- - 2.0 - -			2.50m			-
<u> </u>						2.5- - - -	<u>, , , , , , , , , , , , , , , , , , , </u>		2.50m TERMINATED AT 2.50 m Target depth			
ME EX R HA PT SO AD AD AD HF R R	RHPSAPSSSH NV/TAS	Excavator Ripper land aug Push tub conic dril conic dri conic dri co	ger e ling ler on sam ral aug nt aug ght au ght au	et VE F H VH VH er V-Bit er: V-Bit ger	IETRATION Very Easy (N Easy Firm Hard Very Hard (Re TER Water I Shown water ir water o	^{efusal)} ∟evel on nflow		S F M F	IP - Hand/Pocket Penetrometer D - Di ICP Dynamic Cone Penetrometer U - Th SP - Perth Sand Penetrometer U - Th IC - Moisture Content MOISTURE BT - Plate Bearing Test D - Di ID - Plate Bearing Test D - Di ID - Photoionisation Detector W - W S - Vane Shear; P=Peak, L - Lit	y pist	ample tal sampl be 'undist	le F - Firm
Refe abb	er to e reviatio	xplanatory ons and ba	notes t asis of c	or details of lescriptions			CAR	2 DI	NO (NSW/ACT) PTY LTD			1

C	\square	C	aro	lno°							TE	ST PIT LOG SHEET		
Clie Pro				Land Pty Ltd liffe, Wyee De	velopem	ent					Η	ole No: TP006		
Loc	atio	n: I	Bush	ells Ridge Ro					Job No: 82219014			Sheet: 1 of 1		
				ched plan					Angle from Horizontal: -90°			e Elevation:		
				onne Excavato sions:	r				Excavation Method: 400mm too			ctor: Cardno		
				3/8/18					Logged By: HS			ed By: GA		
Ex	cavat	tion		Sampling & T	esting				Material Description			•		
Method	Resistance	Stability	Water	Sample or Field Test	DCP (blows per 150 mm) 1 3 6 12	Depth (m)	Graphic Log	Classification	SOIL TYPE, plasticity or particle characteristic, colour, secondary and minor components ROCK TYPE, grain size and type, colour, fabric & texture, strength, weathering, defects and structure	Moisture Condition	Consistency Relative Density	STRUCTURE & Other Observations		
						-	لله عله عله عله عله ع له عله عله عله عله عله له عله عله		Silty SAND: fine to medium grained, grey-brown, low plasticity silt, trace rootlets			TOPSOIL		
						-			0.35m Sandy CLAY: low plasticity, brown-orange, fine to	м		RESIDUAL SOIL		
						- 0.5 -			medium grain sand, trace rootlets As above, absent rootlets			-		
						- - 		CL		M (>PL)	St			
EX		Stable	Not Encountered			-			1.10m Sitty CLAY: medium plasticity, pale grey mottled red, with lithorelics (sittstone)					
						- - 1.5 -		СІ		M (>PL)	VSt			
						- 2.0 - -								
<u> </u>						-2.5- - - -			2.50m TERMINATED AT 2.50 m Target depth					
ME EX R HA PT SO AD SO AD HF WE RR	Ri Pr N So Ai SI VV So VV So VV So A Ho SI W	xcavator ipper and aug ush tub onic dril r hamm ercussion hort spir olid fligh	ger ling ler on sam ral auge nt auge nt auge ght auge ght auge	tt VE E F H VH Pler er: V-Bit r: TC-Bit ger	ETRATION Very Easy (Ne Easy Firm Hard Very Hard (Re ER Water L shown water in water o	efusal) ∟evel on nflow		S F F F	IP - Hand/Pocket Penetrometer D - Ditter ICP Dynamic Cone Penetrometer U - The SP - Perth Sand Penetrometer U - The IC - Moisture Content MOISTURE BT - Plate Bearing Test D - Dr ID - Plate Bearing Test D - Dr ID - Photoionisation Detector W - W S - Vane Shear; P=Peak, L - Lit	Bulk disturbed sample VS - Very Soft Disturbed sample S - Soft Environmental sample F - Firm Thin wall tube 'undisturbed' St - Stiff VSt - Very Soft - Very Soft JRE VSt - Very Soft Dry RELATIVE DENSITY Moist VI - Very Losse				
Ref	er to ex	planatory	notes f	or details of escriptions			CAR		NO (NSW/ACT) PTY LTD					

C		Cá	arc	lno°							ΤE	ST PIT LOG SHEET			
Clien Proje				Land Pty Ltd		ent					Η	ole No: TP007			
Loca	tion	n: I	Bush	ells Ridge Ro					Job No: 82219014			Sheet: 1 of 1			
				ched plan					Angle from Horizontal: -90°			e Elevation:			
				onne Excavato Isions:	or				Excavation Method: 400mm toot			ctor: Cardno			
				3/8/18					Logged By: HS			ed By: GA			
	avati			Sampling &	Testing				Material Description						
Method	Resistance	Stability	Water	Sample or Field Test	(blows per 150 mm)	Depth (m)	Graphic Log	Classification	SOIL TYPE, plasticity or particle characteristic, colour, secondary and minor components ROCK TYPE, grain size and type, colour, fabric & texture, strength, weathering, defects and structure	Moisture Condition	Consistency Relative Density	STRUCTURE & Other Observations			
						-			Silty SAND: fine to medium grained, grey-brown, low plasticity silt, trace rootlets	D to M		TOPSOIL			
						- 0.5		CL	Sandy CLAY: low plasticity, brown-orange, fine to medium grain sand, trace rootlets	M (>PL)	St	RESIDUAL SOIL			
EX		Stable	Not Encountered			- 1.0 - 1.0 		CI	2.50m	M (>PL)	VSt				
						-			TERMINATED AT 2.50 m Target depth						
MET EX R HA PT SON AH PS AS AD/V HFA WB RR	Exe Rip Ha Pu: Sol Air Pe Sol Sol Ho Wa		ger e ling er on sam ral auge nt auge ght auge ght auge	er ger	IETRATION Very Easy (No Easy Firm Hard Very Hard (Re TER Water L Shown water in water on	efusal) .evel on flow		S F F F F	IP - Hand/Pocket Penetrometer ICP - Dynamic Cone Penetrometer SP - Perth Sand Penetrometer IC - Moisture Content BT - Plate Bearing Test IP - Borehole Impression Test ID - Photoionisation Detector S - Vane Shear; P=Peak, Beadual (uncorrented IPD) LL	 Bulk disturbed sample Disturbed sample Environmental sample Thin wall tube 'undisturbed' STURE Dry Moist Wet Plastic limit Liquid limit VS - Very Soft S - Soft F - Firm St - Stiff VSt - Very Stiff H - Hard RELATIVE DENSITY VL - Very Loose L - Loose Dense 					
Refer abbre	to exp viation	blanatory is and ba	notes f asis of d	or details of escriptions			CAR	D	NO (NSW/ACT) PTY LTD						

	\square			dno [°]							TE	ST PIT LOG SHEET				
	ject:	:	Rado	e Land Pty Lto cliffe, Wyee Do	evelopeme						Н	ole No: TP008				
	atio αe	n:	Bush	nells Ridge Ro	oad, Bush	ells			Job No: 82219014			Sheet: 1 of 1				
				ched plan	or				Angle from Horizontal: -9 Excavation Method: 400r			e Elevation:				
				isions:	01							actor: Cardno				
				23/8/18					Logged By: HS			ed By: GA				
E	kcavat	tion		Sampling &	Testing				Material De	escription						
Method	Resistance	Stability	Water	Sample or Field Test	(blows per 150 mm) 1 3 6 12	Depth (m)	Graphic Log	Classification	SOIL TYPE, plasticity or particle charact colour, secondary and minor compone ROCK TYPE, grain size and type, colo fabric & texture, strength, weatherin defects and structure	teristic, ients bi lour, iso ig, W	Condition Consistency Relative Density	STRUCTURE & Other Observations				
				D 0.10 - 0.20 m		-	لله علم علم علم علم علم لله علم علم علم علم علم علم علم علم علم علم علم ع		SAND: fine to medium grained, grey-brown low plasticity silt, trace rootlets	vn, trace		TOPSOIL				
						-			0.25m CLAY: medium plasticity, yellow-brown mo orange	ottled		RESIDUAL SOIL				
						- - 0.5 - -					St					
— EX —		Stable	Not Encountered			- - 1.0 - -		СІ	As above, becomes pale grey mottled red, lithorelics (siltstone)		VSt					
					R	- - 1.5 - - - - 2.0 - - - -		CI		M (>	H					
<u> </u>						2.5 -			2.50m TERMINATED AT 2.50 m Target depth							
						- - -										
EX R HAPTC APS ADD HF WE RF	Ri Pri DN Si I Ai S Pri S Si S Si D/V Si D/V Si SA Hi 3 W	xcavato ipper and au ush tub onic dri ir hamm ercussio hort spi olid fligi	ger lling her on sam ral aug ht aug ght au ght au e drillin	et VE F H VH VH ger V-Bit er: V-Bit er: TC-Bit ger	Very Easy (No Easy Firm Hard Very Hard (Ref TER Water Le shown water inf water ou	^{usal)} evel on low		S H D M N I	PT Standard Penetration Test E P Hand/Pocket Penetrometer E CP Dynamic Cone Penetrometer E SP Perth Sand Penetrometer E C Moisture Content M BT Plate Bearing Test E IP Borehole Impression Test D D Photoionisation Detector V S Vane Shear; P=Peak, E	D - Disturber ES - Environm U - Thin wall MOISTURE D - Dry M - Moist W - Wet PL - Plastic lir LL - Liquid lin	Bulk disturbed sample VS - Very Soft Disturbed sample S - Soft Environmental sample F - Firm Thin wall tube 'undisturbed' St - Stiff URE VS - Very Stiff Dry RELATIVE DENSITY Wet VL - Very Loose Plastic limit Loose					
Ref abb	fer to ex previatio	planator	y notes t asis of c	for details of lescriptions			CAR		NO (NSW/ACT) PTY LT	D		1				

Project: Location		Radeli								H	ole No: TP009
3idge osition			ffe, Wyee De Ils Ridge Ro					Job No: 82219014			Sheet: 1 of 2
				,				Angle from Horizontal: -90°	5	Surfac	e Elevation:
viacnine			nne Excavato	or				Excavation Method: 400mm toot	hed bu	cket	
Excavati	on D	imens	ions:								ctor: Cardno
Date Exc		ed: 23						Logged By: HS	(Check	ed By: GA
Excavati	on		Sampling & T	Testing				Material Description	1		
Method Resistance	Stability	Water	Sample or Field Test	(blow per 150 m	. Dept Dm) (mr	Graphic Log	Classification	SOIL TYPE, plasticity or particle characteristic, colour, secondary and minor components ROCK TYPE, grain size and type, colour, fabric & texture, strength, weathering, defects and structure	Moisture Condition	Consistency Relative Density	STRUCTURE & Other Observations
1						لك على على على على على لك على على على على على على على على لك على على		SAND: fine to medium grained, yellow-brown, trace low plasticity silt, trace rootlets	D		TOPSOIL
					į	ىلىر غاير ب باير غاير غاير مەر مەر مەر م		0.25m			
					-0.5		sw	SAND: fine to medium grained, yellow-brown	D	L	ALLUVIUM
							CL- CI	0.55m Sandy CLAY: low to medium plasticity, yellow-brown mottled orange, fine to medium grain sand, trace fine to medium sub-angular gravel .070m	M (■PL)	VSt	RESIDUAL SOIL
					1.0			Sitty CLAY: low to medium plasticity, pale grey mottled red, with lithorelics (sittstone)		VSt	
EX	Stable				-1.5 		CL- CI		M (>PL)	Н	
•		inflow encountered at 2.2m			- - - - - - - - - 			2.50m TERMINATED AT 2.50 m Target depth			
METHOD PENETRATION EX Excavator bucket R Ripper HA Hand auger PT Push tube SON Sonic drilling AH Air hammer PS Percussion sampler AD/V Solid flight auger: V-Bit AD/T Solid flight auger: V-Bit HFA Holow flight auger: V-Bit HFA Washbore drilling RR Rock roller							SI H P M PI	P - Hand/Pocket Penetrometer D - Dis CP Dynamic Cone Penetrometer U - Thi SP Perth Sand Penetrometer U - Thi C Moisture Content MOISTURE ST Plate Bearing Test D - Dry IP Borehole Impression Test M - Mo D - Photoionisation Detector W - We S - Vane Shear; P=Peak, L - Liq	/ ist	imple al sampl be 'undist	e S - Soft F - Firm

			no°								ST PIT LOG SHEET
Client: Project:	F	Radcl	Land Pty Ltd liffe, Wyee De							H	ole No: TP010
Location Ridge			ells Ridge Roa ched plan	ad, Bushe	ells			Job No: 82219014			Sheet: 1 of 1
			ched plan onne Excavato	-				Angle from Horizontal: -90° Excavation Method: 400mm too			e Elevation:
Excavation				1				Excavation Method. 400min too			ctor: Cardno
Date Exc								Logged By: HS			ed By: GA
Excavatio	on		Sampling & T	esting				Material Description	1		
Method Resistance	Stability	Water	Sample or Field Test	(blows per 150 mm)	Depth (m)	Graphic Log	Classification	SOIL TYPE, plasticity or particle characteristic, colour, secondary and minor components ROCK TYPE, grain size and type, colour, fabric & texture, strength, weathering, defects and structure	Moisture Condition	Consistency Relative Density	STRUCTURE & Other Observations
						لله عله عله عله عله عله لله عله عله عله عله عله عله عله عله لله عله عله	0	SAND: fine to medium grained, yellow-brown, trace low plasticity silt, trace rootlets	D to M		TOPSOIL
					-0.5		CL- CI	0.25m Sandy CLAY: low to medium plasticity, yellow-brown mottled orange, fine to medium grain sand, trace fine to medium sub-angular gravel	M (>PL)	St	RESIDUAL SOIL
EX	Stable	Not Encountered	B 0.65 - 0.95 m		- 1.0		CL- CI	3.65m Sitty CLAY: low to medium plasticity, pale grey mottled red, with lithorelics (sittstone)	M (>PL)	St	
					- 1.5		sw	1.50m SAND: medium to coarse grained, pale grey mottled red, with shell fragments	м	H	EXTREMELY WEATHERED
.								1.90m TERMINATED AT 1.90 m Virtual Refusal			1.90 m: Residual soil transitioning to extremely weathered sandstone
R Rip HA Har PT Pus SON Sor AH Air PS Per AS Sho AD/V Sol AD/T Sol HFA Hol WB Wa	llow flig ashbore	er ing er n samp al auge t auger t auger ght auger ght aug	t VE E F VH VH VH CH VH	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	^{isal)} vel on ow		S H D M P M	P - Hand/Pocket Penetrometer D - D CP - Dynamic Cone Penetrometer ES - EE CP - Perth Sand Penetrometer U - TI CP - Moisture Content D - D TP Plate Bearing Test D - D P - Borehole Impression Test M - M O - Photoionisation Detector W - W Q - Vane Shear; P=Peak, L - L	ulk disturbe isturbed sa nvironment nin wall tub E ry oist	imple al sampl be 'undist	e S - Soft turbed' St - Stiff VSt - Very Stiff H - Hard RELATIVE DENSITY VL - Very Loose L - Loose MD - Medium Dense D - Dense
RR Roo	ck rolle		r details of					IO (NSW/ACT) PTY LTD			VD - Very Dense

ne Ty ation	Bus e atta be: 5 Dime	cliffe, Wyee I hells Ridge F ached plan tonne Excava nsions: 23/8/18 Sampling Sample or	Road, Bus	hells			Job No: 82219014 Angle from Horizontal: -90° Excavation Method: 400mm t		Surfac	Sheet: 1 of e Elevation:
ne Ty ation xcava ation	be: 5 Dime ited:	tonne Excava nsions: 23/8/18 Sampling							Surfac	e Elevation:
ation xcava ation	Dime Ited:	nsions: 23/8/18 Sampling					Exception Mothod: 400mm t			
xcava ation	ited:	23/8/18 Sampling	& Testing				Excavation Method: 400mm	bothed b		· • •
ation		Sampling	& Testing							ctor: Cardno
	Water			1			Logged By: HS Material Descript		Check	ed By: GA
Stability	Water	Sample or		-		_				
		Field Test	(blows per 150 mm	Dept (i	Graphic Log	Classification	SOIL TYPE, plasticity or particle characteristic, colour, secondary and minor components ROCK TYPE, grain size and type, colour, fabric & texture, strength, weathering, defects and structure	Moisture Condition	Consistency Relative Density	STRUCTURE & Other Observations
				-	لك علك عك علك عك عك يك عك عك عك عك عك يك عك عك يك عك عك		SAND: fine to medium grained, yellow-brown, trac low plasticity silt, trace rootlets	e D		TOPSOIL
				-			0.30m Clayey SAND: fine to medium grained, yellow-brown, low to medium plasticity clay, trace fine to eredium cub agendre gravel			COLLUVIUM
				- 0.5		sc	ine to metuuri, sub-anguar graver	м	St	
Stable	encountered at 1.0m	-		- 1.0 - -			1.00m Silty CLAY: low to medium plasticity, pale grey mottled red, with lithorelics (siltstone)			RESIDUAL SOIL
0	inflow e			- - 1.5 -		CL-				
				- - 2.0 - -		CI		M (>PL) St to VSt	
+	_			2.5	μM		2.50m TERMINATED AT 2.50 m			
				-						
Ripper Hand a Push tu Sonic d Air ham Percus Short s Solid fli Solid fli Hollow	uger be rilling mer sion sar biral au ght aug ght aug flight au	ket V E F H V mpler V ger ger V ger V J Bit ger C-Bit ger	E Very Easy (f Easy Firm Hard H Very Hard (F VATER Water shown water i	No Resistar Refusal) Level on nflow		S F F M F	SPT Standard Penetration Test B IP Hand/Pocket Penetrometer D VCP Dynamic Cone Penetrometer U VSP Perth Sand Penetrometer U VR Moisture Content MOIST VBT Plate Bearing Test D VIP Borehole Impression Test M VID Photoionisation Detector W VS Vane Shear, P=Peak, PL	Bulk disturi Disturbed s Environmen Thin wall tu JRE Dry Moist Wet Plastic limit Liquid limit	sample htal sampl ibe 'undis	le F - Firm
	Excavat Ripper Push tu Sonic di Vir ham Percuss Short sp Solid flig Hollow f Vashbo Rock ro	D C C C C C C C C C C C C C	D P Excavator bucket Vipper tand auger Vash tube Fercussion sampler short spiral auger Shold flight auger: TC-Bit Solid flight auger: V-Bit Solid flight auger Vashbore drilling	Image:	Image: State of the state	a) a) a) b)	and additional and a second	9000 0.00m SC 9000 0.00m 0.00m 1 -1.0 0.00m 1 -2.0 0.00m 0 0.00m 0.00m 0	00000 00000 SC M 100000 100000 100000 SINCLAY: tow to medium plasticity, pale grey motified red, with lithoretics (silistone) M 1000000000000000000000000000000000000	0000 00000 0000 0000 0000

Clier				ino ° e Land Pty Ltd	1							ST PIT LOG SHEET
Proje Loca	ect:	I	Rado	liffe, Wyee De	evelopem						H	ole No: TP012
				nells Ridge Ro Iched plan	au, bush	lens			Job No: 82219014 Angle from Horizontal: -90°		Surfac	Sheet: 1 of 1 e Elevation:
				onne Excavate	or				Excavation Method: 400mm too			
Exca	avati	on D	imer	nsions:						(Contra	ctor: Cardno
			ed: 2	23/8/18		<u> </u>			Logged By: HS		Check	ed By: GA
Exc	cavati	on		Sampling &	Testing				Material Descriptior		1	
Method	Resistance	Stability	Water	Sample or Field Test	(blows per 150 mm)	Depth (m)	Graphic Log	Classification	SOIL TYPE, plasticity or particle characteristic, colour, secondary and minor components ROCK TYPE, grain size and type, colour, fabric & texture, strength, weathering, defects and structure	Moisture Condition	Consistency Relative Density	STRUCTURE & Other Observations
						-	للد علم علم علم علم علم للد علم علم علم علم علم علم علم علم علم علم ع		SAND: fine to medium grained, yellow-brown, trace low plasticity silt, trace rootlets	м		TOPSOIL
						-		SC	0.20m Clayey SAND: fine to medium grained, yellow-brown, low to medium plasticity clay, trace fine to medium, sub-angular gravel 0.50m	D to M	L	COLLUVIUM
				B 0.50 - 0.80 m		- 0.5			Sandy Silty CLAY: low plasticity, red-brown, fine to medium grain sand, trace lithoretics (siltstone)			RESIDUAL SOIL
		ble	Not Encountered			- 1.0 -		CL	As above, becomes with cobble sized lithorelics (sittstone)	M (>PL)	VSt	
EX		Stable	Not E			- - - 1.5			1.50m CLAY: medium plasticity, pale grey mottled red, with lithorelics (siltstone)			
v						- 2.0		CI	2.50m	M (>PL)	VSt	
-						-2.5-			TERMINATED AT 2.50 m Target depth			
	110-					-		-				
MET EX R HA PT SON AH PS AS AD/7 HFA WB RR	Riµ Ha Pu N Sc Air Pe Sh V Sc T Sc A Hc Wa	cavator oper ind aug ish tub nic dril hamm rcussic ort spir lid fligh	jer e ling er on sam ral aug at aug at aug oft aug ght au e drillin	et VE F H VH ver er: V-Bit er: TC-Bit ger	IETRATION Very Easy (No Easy Firm Hard Very Hard (Re TER Water L shown water in d water or	efusal) .evel on flow		S H D P M P I P	IP - Hand/Pocket Penetrometer D - D ICP Dynamic Cone Penetrometer U - TI SP - Perth Sand Penetrometer U - TI IC - Moisture Content D - D BT - Plate Bearing Test D - D - D ID - Borehole Impression Test M - M M ID - Photoionisation Detector W - W S - Vane Shear; P=Peak, L - L	ulk disturbe isturbed sa nvironment nin wall tub E ry oist	ample al sampl be 'undist	e S - Soft F - Firm
							CAF					

	/			no°								ST PIT LOG SHEET		
Client Projec	ct:	F	Radc	Land Pty Ltd liffe, Wyee De	evelopem						H	ole No: TP013		
Locati Ridae				ells Ridge Ro	oad, Bush	ells			Job No: 82219014			Sheet: 1 of 1		
				ched plan onne Excavate	or				Angle from Horizontal: -90° Excavation Method: 400mm to			e Elevation:		
Excav					01				Excavation Method. 400mm to			ctor: Cardno		
Date E									Logged By: HS			ed By: GA		
Exca	vatior	1 I		Sampling &	Testing				Material Description			•		
			ľ			Ê		E						
Method	Kesistance	Stability	Water	Sample or Field Test	(blows per 150 mm)	Depth (m)	Graphic Log	Classification	SOIL TYPE, plasticity or particle characteristic, colour, secondary and minor components ROCK TYPE, grain size and type, colour, fabric & texture, strength, weathering, defects and structure	Moisture Condition	Consistency Relative Density	STRUCTURE & Other Observations		
						_			Sitty SAND: fine to medium grained, brown, low plasticity sitt, trace rootlets	D		TOPSOIL		
						-			0.30m			RESIDUAL SOIL		
						- 0.5 			Sandy Sitty CLAY: low plasticity, red-brown, fine to medium grain sand, trace lithorelics (sittstone)		St			
EX		Stable	Not Encountered			- - 1.0 - - - - 1.5 - -		CL	1.80m	M (>PL)	VSt			
						- - 2.0 - - - -		СІ	CLAY: medium plasticity, pale grey mottled red, wit lithorelics (siltstone) 2.50m	л М (>PL)	н			
						-2.3—			TERMINATED AT 2.50 m Target depth					
						-								
PT SON AH PS AS AD/V	Exca Ripp Hand Push Sonid Air h Perc Shor Solid Solid Hollo Was	er d aug tube c drilli amme ussion t spira l fligh l fligh w flig	ing er al auge t auge t auge ht auge drillin	t VE E F H VH VH tr: V-Bit r: TC-Bit eer	NETRATION Very Easy (No Easy Firm Hard Very Hard (Ref TER Water Lo Shown water inf water ou	^{fusal)} evel on flow		S H D P M P I P	P Hand/Pocket Penetrometer D CP Dynamic Cone Penetrometer ES SP Perth Sand Penetrometer U IC Moisture Content MOISTUI BT Plate Bearing Test D ID Photoionisation Detector M S Vane Shear; P=Peak, LL	Bulk disturbed sample VS - Very Soft Disturbed sample S - Soft Environmental sample F - Firm Thin wall tube 'undisturbed' St - Stiff JRE H - Hard				
Refer to abbrevia	o expla ations a	natory and ba:	notes fo sis of de	or details of escriptions			CAR		NO (NSW/ACT) PTY LTD			I		

					4.4							ST PIT LOG SHEET
Clien Proje	ect:	E E	Radc	Land Pty I liffe, Wyee	Develop	pement					H	ole No: TP014
Loca Ridq				ells Ridge ched plan	Road, B	ushells			Job No: 82219014		0	Sheet: 1 of 1
				cned plan onne Excav	ator				Angle from Horizontal: -90° Excavation Method: 400mm too			e Elevation:
				sions:								ctor: Cardno
Date	Exc	cavat	ed: 2	3/8/18					Logged By: HS		Checke	ed By: GA
Exc	avati	on		Sampling	& Testing	I			Material Description			
Method	Resistance	Stability	Water	Sample o Field Tes	r `p t 150	Depth (m)	Graphic Log	Classification	SOIL TYPE, plasticity or particle characteristic, colour, secondary and minor components ROCK TYPE, grain size and type, colour, fabric & texture, strength, weathering, defects and structure	Moisture Condition	Consistency Relative Density	STRUCTURE & Other Observations
							م علد علد علد علد م علد علد علد علد علد علد علد علد علد علد علد علد ع		Silty SAND: fine to medium grained, grey-brown, low plasticity silt, trace rootlets	D		TOPSOIL
		υ	Not Encountered					sc	0.25m Clayey SAND: fine to medium grained, orange-brown, low plasticity clay	м	L to MD	COLLUVIUM
EX-		Stable	Not Enc			- - - - - - - -		CI	0.80m Silty CLAY: medium plasticity, pale grey mottled red	M (>PL)	F	RESIDUAL SOIL
					R	 - -1.5 			1.50m SILTSTONE, pale grey mottled red, thinly laminated, extremely weathered, extremely low strength			WEATHERED ROCK
						-2.0 -2.0 -2.0 -2.1 - -2.5 -2.5 -1 -2.5 -1 -1			TERMINATED AT 1.60 m Virtual Refusal			
MET EX R HA PT SON AH PS AD/V AD/V HFA WB RR	Ex Rip Ha Pu Air Pe Sh So T So T So Wa		ler er on saml ral auge at auge at auge ght auge ght auge	t pler er f: V-Bit r: TC-Bit ger	E Easy F Firm H Hard VH Very H WATER Wash	TON asy (No Resista ard (Refusal) ater Level o own tter inflow tter outflow		F F F F	P Hand/Pocket Penetrometer D - Director CP Dynamic Cone Penetrometer U - Tr SP Perth Sand Penetrometer U - Tr CC Moisture Content MOISTURI BT Plate Bearing Test D - Dir ID Photoionisation Detector M - Mit ID Photoionisation Detector W - W Vane Shear; P=Peak, PL - Pit	ulk disturb sturbed sa wironmen nin wall tul Sy oist	ample tal sampl be 'undist	e S - Soft F - Firm
				or details of escriptions			CAF	RDI	NO (NSW/ACT) PTY LTD			1

Olianti	/	aro									ST PIT LOG SHEET
Client: Projec	:t:	Radc	Land Pty Ltd liffe, Wyee De	evelopem						H	ole No: TP015
Locati Ridge			ells Ridge Ro ched plan	ad, Bush	ells			Job No: 82219014		0	Sheet: 1 of 1
			cned plan onne Excavate	or				Angle from Horizontal: -90° Excavation Method: 400mm toot			e Elevation:
			isions:								ctor: Cardno
Date E								Logged By: HS			ed By: GA
Excav	ation/		Sampling &	Testing				Material Description			
ď	U				Ê		Б				
Method Resistance	Stability	Water	Sample or Field Test	(blows per 150 mm)	Depth (m)	Graphic Log	Classification	SOIL TYPE, plasticity or particle characteristic, colour, secondary and minor components ROCK TYPE, grain size and type, colour, fabric & texture, strength, weathering, defects and structure	Moisture Condition	Consistency Relative Density	STRUCTURE & Other Observations
					-	لك علك عك علك علك ع لك علك علك علك علك عك لك علك علك		Silty SAND: fine to medium grained, grey-brown, low plasticity silt, trace rootlets			TOPSOIL
					-	على على على م لك على على على على على لك على على على على على ع			D		
							80	0.30m Clayey SAND: fine to medium grained, yellow-brown, low plasticity clay, with fine to coarse, sub-angular gravel	м	MD	COLLUVIUM
					-		SC	1.00m	M	MD	
EX	Stable	Not Encountered			-			Sandy CLAY: low to medium plasticity, pale grey mottled red, fine to medium grain sand, with lithorelics (siltstone)			RESIDUAL SOIL
					- 1.5		CL- CI	2.00m	M (>PL)	н	
					- 2.0		sw	SAND: fine to medium grained, pale grey mottled red, with shell fragments	м	VD	EXTREMELY WEATHERED
<u> </u>					-2.5-			2.50m TERMINATED AT 2.50 m			
					-			Target depth			
EX R HA PT SON AH PS AD/V AD/T HFA WB	 Ripper A Hand auger Y Push tube SON Sonic drilling W Air hammer S Percussion sampler S Short spiral auger: V-Bit M/X Solid flight auger: TC-Bit HFA Hollow flight auger W B Washbore drilling 				efusal) .evel on flow		S F F F	IP - Hand/Pocket Penetrometer D - Display ICP - Dynamic Cone Penetrometer U - Th SP - Perth Sand Penetrometer U - Th IC - Moisture Content MOISTURE D - Display BT - Plate Bearing Test D - Dr IID - Photoionisation Detector W - We S - Vane Shear; P=Peak, PL - Plate	y bist	ample tal sampl be 'undist	le F - Firm
	explanato	ory notes f	or details of escriptions			CAR		NO (NSW/ACT) PTY LTD			

	\supset	Cá	ard	no°							TE	ST PIT LOG SHEE
Clie Proj		I	Rádcl	Land Pty Lto iffe, Wyee D	evelopem	nent					Η	ole No: TP016
				ells Ridge Ro	oad, Bush	nells			Job No: 82219014			Sheet: 1 of
				hed plan					Angle from Horizontal: -90°	5	Surfac	e Elevation:
Mac	hine	е Туре	e: 5 to	onne Excavat	or				Excavation Method: 400mm toot	hed bu	cket	
				sions:								ictor: Cardno
			ed: 23			-			Logged By: HS	(Check	ed By: GA
Ex	cavati	ion		Sampling &	Testing	4			Material Description			
Method	Resistance	Stability	Water	Sample or Field Test	(blows per 150 mm)		Graphic Log	Classification	SOIL TYPE, plasticity or particle characteristic, colour, secondary and minor components ROCK TYPE, grain size and type, colour, fabric & texture, strength, weathering, defects and structure	Moisture Condition	Consistency Relative Density	STRUCTURE & Other Observations
						-	لله علم علم علم علم علم لله علم علم لله علم علم علم علم علم علم علم علم		Silty SAND: fine to medium grained, grey-brown, low plasticity silt, trace rootlets	D		TOPSOIL
									0.30m Sandy CLAY: low to medium plasticity, orange-brown, fine to medium grain sand, trace lithorelics (sittstone)		St	RESIDUAL SOIL
EX-		Stable	Not Encountered			- 1.0		CL- CI	As above, becomes pale grey mottled orange, with lithorelics (siltstone)	M (>PL)	VSt to H	
					VR	- 1.5		sw	1.40m SAND: medium to coarse grained, pale grey mottled orange, with shell fragments	м	VD	EXTREMELY WEATHERED
									1.80m SANDSTONE, medium to coarse grained, pale grey, extremely weathered, extremely low strength 2.00m			WEATHERED ROCK
						- 2.5			TERMINATED AT 2.00 m Virtual Refusal			
EX R HA PT SOI AH PS AD/ AD/ HFA	METHOD FENETRATION XE Excavator bucket Ripper VE VeryEasy (N EX Base YE VeryEasy (N VE VeryEasy (N E Easy F Firm VH Air harmer YS Percussion sampler SON Short spiral auger VD/V Solid flight auger: V-Bit VD/V Solid flight auger VB<				^{efusal)} ∟evel on nflow		S H P M I	P - Hand/Pocket Penetrometer D - Dis CP - Dynamic Cone Penetrometer U - Thi SP - Perth Sand Penetrometer U - Thi CP - Moisture Content MOISTURE BT - Plate Bearing Test D - Dr. ID - Photoionisation Detector M - Moisture ID - Photoportation Detector W - Weight Presenting Upgerstreach (PR)	/ ist et astic limit uid limit	ample tal sampl be 'undis	te S - Soft turbed' St - Stiff VSt - Very Stiff H - Hard RELATIVE DENSITY VL - Very Loose L - Loose MD - Medium Densk	
WB RR	A Ho Wa Ro er to exp	pllow flig ashbor ock rolle planatory	ght aug e drilling er	er 🗖	water o				B-Besdual (uncorrected kBa)		ntent	MD - Medium Dens D - Dense VD - Very Dense

Client	t:		Vvee I	Land Pty Ltd								U	ST PIT LOG SHEE
Proje Locat	ct:	F	Radcli	ffe, Wyee De	velopem	ent						Η	ole No: TP017
				hed plan	au, busi	lelis			Job No: 82219014	0°		Surfac	Sheet: 1 of e Elevation:
					~				Angle from Horizontal: -90 Excavation Method: 400m				e Elevation:
			imens	nne Excavato	Dr				Excavation Method: 400m	im tootn			ctor: Cardno
			ed: 23						Logged By: HS				ed By: GA
Exca			50. 25	Sampling &	Focting				Material Des	scription		SHECK	eu by. OA
	Ivalic	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	-	Sampling &						Scription		1	
Method	Kesistance	Stability	Water	Sample or Field Test	(blows per 150 mm)	Depth (m)	Graphic Log	Classification	SOIL TYPE, plasticity or particle character colour, secondary and minor componer ROCK TYPE, grain size and type, colou fabric & texture, strength, weathering, defects and structure	ents our,	Moisture Condition	Consistency Relative Density	STRUCTURE & Other Observations
						-	لك علك علك علك علك ع لك علك علك علك علك ع لك علك علك علك علك ع		Sitty SAND: fine to medium grained, grey-bro plasticity sitt, trace rootlets	rown, low	D		TOPSOIL
						-	الد علم علم علم علم علم علم علم علم علم علم علم علم علم علم		0.30m	with alove			ALLUVIUM
									SAND: fine to medium grained, pale grey, wi	Mith clay	М	L	
			red at 0.6m			-				-			_
EX		Stable	inflow encountered at 0.6m			- - 1.0		sw			W	MD	
		St				-							
						- 1.5			1.40m Sandy CLAY: low to medium plasticity, pale g mottled red, fine to coarse grain sand, with lithorelics (siltstone)	grey			RESIDUAL SOIL
						-		CL- CI			M (>PL)	VSt	
						-		sw	1.80m SAND: medium to coarse grained, pale grey orange, with shell fragments	ey mottled	w	D	EXTREMELY WEATHERED
						-2.0			2.00m SANDSTONE, medium to coarse grained, p	pale			WEATHERED ROCK
♥						-			2.10m grey, extremely weathered, extremely low str	strength			
						- - 2.5			TERMINATED AT 2.10 m Virtual Refusal				
						-							
METH EX R HA PT SON AH PS AS AD/V AD/T HFA WB	THOD PENETRATION Excavator bucket VE Ripper Bada auger Push tube VE N Sonic drilling Hada auger Air hammer Percussion sampler Percussion sampler Short spiral auger: V-Bit VS Solid flight auger: TC-Bit Hollow flight auger: C-Bit A Hollow flight auger: water inflow Washbore drilling water outflow					efusal) ∟evel on nflow		S H D P N I N	PT - Standard Penetration Test B P - Hand/Pocket Penetrometer D CP - Dynamic Cone Penetrometer U SP - Perth Sand Penetrometer U C - Moisture Content MC BT - Plate Bearing Test D IP - Borehole Impression Test M D - Photoionisation Detector W S - Vane Shear; P=Peak, PL	S - Distu S - Envi - Thin IOISTURE - Dry I - Mois V - Wet L - Plas	urbed sa ronment wall tub st	ed sample ample al sampl e 'undist	e S - Soft F - Firm
RR		k rolle							R=Resdual (uncorrected kPa)	- Mois	sture cor	itent	VD - Very Dense

	\square	C	arc	dno							ΤE	ST PIT LOG SHEET
Clie	ent: ject:	,	Nye Rado	e Land Pty Lto cliffe, Wyee D	eveloper	nent					Η	ole No: TP018
Loc	atio	n:	Busl	nells Ridge Ro					Job No: 82219014			Sheet: 1 of 1
				ched plan					Angle from Horizontal: -90°			e Elevation:
				tonne Excavat nsions:	or				Excavation Method: 400mm too			ctor: Cardno
				23/8/18					Logged By: HS			ed By: GA
E>	xcavat	tion		Sampling &	Testing				Material Description			•
Method	Resistance	Stability	Water	Sample or Field Test	(blows per 150 mm	<i>.</i>	Graphic Log	Classification	SOIL TYPE, plasticity or particle characteristic, colour, secondary and minor components ROCK TYPE, grain size and type, colour, fabric & texture, strength, weathering, defects and structure	Moisture Condition	Consistency Relative Density	STRUCTURE & Other Observations
				D 0.10 - 0.20 m		-	لله عله عله عله عله عله لله عله عله عله عله عله لله عله عله عله عله ع	_	Sitty SAND: fine to medium grained, grey-brown, low plasticity silt, trace rootlets	D		TOPSOIL
				B 0.50 - 0.80 m		- - - 0.5 -			0.30m Silty CLAY: medium plasticity, grey mottled orange red, with sand, trace lithorelics (siltstone)		St	RESIDUAL SOIL
EX		Stable	Not Encountered			- 1.0		СІ		M (>PL)	St to VSt	
						- - - - - 2.0 - - -			As above, becomes pale grey mottled orange, absent sand and lithorelics		н	
┞╨						-2.5-	<u>FXXX</u>		2.50m TERMINATED AT 2.50 m			
EX		xcavato	r buck	et _{VE}	I I I I I I I I I I I I I I I I I I I	 	nce)	s		lk disturb		
R HA PT SC AH PS AS AD HF WE RF	A H PN Si A Ai S SI S/V Si S/V Si S/T Si B W		e Iling Ier on san ral aug nt aug nt aug ght au ght au	npler W4 ger 7 ger: V-Bit - er: TC-Bit 9 ger 9	Easy Firm Hard Very Hard (F TER Water shown water i water o	efusal) Level on nflow		P P IN P	CP - Dynamic Cone Penetrometer ES - Er SP - Perth Sand Penetrometer U - Th IC - Moisture Content MOISTURE BT - Plate Bearing Test D - Dr IP - Borehole Impression Test M - Mu ID - Photoionisation Detector W - Wk S - Vane Shear; P=Peak, PL - Pk BE-Bodulu (uncorrented (ID)) LL - Lic	y bist	tal sampl	le S - Soft F - Firm St - Stiff VSt - Very Stiff H - Hard RELATIVE DENSITY VL - Very Loose L - Loose MD - Medium Dense D - Dense VD - Very Dense
Ref abb	fer to ex previatio	planatory	/ notes asis of (for details of descriptions			CAR	2 D	NO (NSW/ACT) PTY LTD			

	\square	C	arc	Ino °							ΤE	ST PIT LOG SHEET
Clie Pro				e Land Pty Ltd liffe, Wyee De		nent					Η	ole No: TP019
Loc	atio	n:	Bush	nells Ridge Ro					Job No: 82219014			Sheet: 1 of 1
				ched plan					Angle from Horizontal: -90°			e Elevation:
				onne Excavato	or				Excavation Method: 400mm too			ctor: Cardno
				23/8/18					Logged By: HS			ed By: GA
	cavat			Sampling &	Testing				Material Description			,
Method	Resistance	Stability	Water	Sample or Field Test	(blows per 150 mm)	Depth (m)	Graphic Log	Classification	SOIL TYPE, plasticity or particle characteristic, colour, secondary and minor components ROCK TYPE, grain size and type, colour, fabric & texture, strength, weathering, defects and structure	Moisture Condition	Consistency Relative Density	STRUCTURE & Other Observations
A					1 3 6 12		لله عليه عليه عليه عليه ع لله عليه عليه عليه عليه ع	0	Silty SAND: fine to medium grained, grey-brown, low plasticity silt, trace rootlets			TOPSOIL
				D 0.10 - 0.20 m		-	لك على على على على على على على على على لك على على على على على			D to M		
						-		sw	0.30m SAND: fine to medium grained, grey-brown 0.50m	м	MD	ALLUVIUM
						- 0.5 -			Silty CLAY: medium plasticity, grey mottled orange			RESIDUAL SOIL
						-					St	
		0	Encountered			- 1.0						
EX-		Stable	Not Enc			-						
						- -		СІ	As above, becomes grey mottled red	M (>PL)		
						- - 2.0					VSt	
V						- - 2.5-			2.50m			
						-			TERMINATED AT 2.50 m Target depth			
METHOD PENETRATION EX Excavator bucket R Ripper HA Hand auger PT Push tube SON Sonic drilling AH Air hammer PS Percussion sampler AD/V Solid flight auger: V-Bit AD/V Solid flight auger: C-Bit HFA Hollow flight auger						^{efusal)} ∟evel on nflow		S F F F	IP - Hand/Pocket Penetrometer D - Di ICP - Dynamic Cone Penetrometer ES - Er SP - Perth Sand Penetrometer U - Th IC - Moisture Content MOISTURE BT - Plate Bearing Test D - Dr ID - Photoionisation Detector M - Mit VS - Vane Shear; P=Peak, PL - PL	y pist	ample tal sampl	e burbed' turbed' St - Stiff VSt - Very Stiff H - Hard RELATIVE DENSITY VL - Very Loose L - Loose L - Loose
WE RR Ref	er to ex	/ashbor ock rolle planatory	notes t	rg —	- water o	uliow	CAR			Disture cor	ntent	D - Dense VD - Very Dense

5) C	arc	lno [°]							TE	ST PIT LOG SHEET
Client: Project			e Land Pty Ltd cliffe, Wyee De	veloper	nent					Η	ole No: TP020
Locatio	on:	Bush	nells Ridge Ro					Job No: 82219014			Sheet: 1 of 1
			ched plan					Angle from Horizontal: -90° Excavation Method: 400mm too			e Elevation:
Excava			onne Excavato	И				Excavation Method. 400mm too			ctor: Cardno
Date Ex								Logged By: HS			ed By: GA
Excava	ation		Sampling & T	Festing				Material Description			
Method Resistance	Stability	Water	Sample or Field Test	(blows per 150 mm)		Graphic Log	Classification	SOIL TYPE, plasticity or particle characteristic, colour, secondary and minor components ROCK TYPE, grain size and type, colour, fabric & texture, strength, weathering, defects and structure	Moisture Condition	Consistency Relative Density	STRUCTURE & Other Observations
1			D 0.10 - 0.20 m		-	لك على على على على على يلك على على يلك على على يلك على على يلك على على		Silty SAND: fine to medium grained, grey-brown, low plasticity silt, with clay, trace rootlets	w		TOPSOIL
			B 0.60 - 1.00 m					0.30m Sandy CLAY: low plasticity, grey mottled brown-orange, fine to medium grain sand, with lithorelics (sittstone)		St	RESIDUAL SOIL
EX	Stable				- 1.0		CL		M (>PL)	VSt	
		inflow encountered at 1.6m			- 1.5 - - - 2.0 -		CI	1.60m Sitty CLAY: medium plasticity, pale grey mottled orange	M (>PL)	VSt to H	
¥					- 2.5-			2.50m TERMINATED AT 2.50 m Target depth			
EX E R HA H PT F SON S AH A PS F AD/V S AD/V S AD/T S HFA H WB N	R Ripper HA Hand auger PT Push tube SON Sonic drilling AH Air hammer PS Percussion sampler AD/V Solid flight auger: V-Bit HFA Hollow flight auger: W-Bit Water Level Water Level Water Inflow WB Washbore drilling						S H D P M P I N P	IP - Hand/Pocket Penetrometer D - Dit ICP - Dynamic Cone Penetrometer U - Th SP - Perth Sand Penetrometer U - Th IC - Moisture Content MOISTURE BT - Plate Bearing Test D - Dr IID - Photoionisation Detector W - W S - Vane Shear; P=Peak, LL - LL	y pist	ample tal sampl be 'undist	e S - Soft F - Firm
Refer to	explanator tions and b	y notes t asis of c	or details of lescriptions			CAR		NO (NSW/ACT) PTY LTD			1

	D	C	arc	dno°							TE	ST PIT LOG SHEET
Clie Pro	nt: ject:	1	Nye	e Land Pty L cliffe, Wyee	td Developen	nent					Н	ole No: TP021
Loc	atio	n:	Busl	nells Ridge I					Job No: 82219014			Sheet: 1 of 1
				ched plan					Angle from Horizontal:			e Elevation:
				tonne Excava nsions:	ator				Excavation Method: 4	00mm toothed		actor: Cardno
				23/8/18					Logged By: HS			ed By: GA
Ex	cavat	ion		Sampling	& Testing					I Description		
Method	Resistance	Stability	Water	Sample or Field Test	150 mm	<i>.</i>	Graphic Log	Classification	SOIL TYPE, plasticity or particle cha colour, secondary and minor com ROCK TYPE, grain size and type, fabric & texture, strength, weath defects and structure	racteristic, ponents colour, ering,	Consistency Relative Density	STRUCTURE & Other Observations
1						-	للد علد علد علد علد ع للد علد علد علد علد ع		Clayey Silty SAND: fine to medium gra brown, low plasticity clay, trace rootlet			TOPSOIL
				D 0.10 - 0.20 m		_	للد علد علد علد علد ع للد علد علد			М		
				D 0.50 - 0.60 m		- - 0.5 - -		sc	0.30m Clayey SAND: fine to medium grained plasticity clay	l, grey, low	MD	ALLUVIUM
EX		Stable				- - 1.0 - - - - - - - - - - -			0.90m Sandy CLAY: low to medium plasticity, mottled orange, fine to coarse grain s	, pale grey and		RESIDUAL SOIL
			inflow encountered at 2.2m	PP 2.00 m =350 kPa PP 2.50 m =300 kPa PP 2.70 m =300 kPa		2.0 - - - - 2.5 - -		CL- CI		M (>1	PL) VSt	
						-			3.00m			
<u> </u>						3.0 - - -			TERMINATED AT 3.00 m Target depth			
EX R HA PT SO AH PS AD AD HF WE R	Ri Ha Pu St St /V So /T So A Ho 3 Ro	ccavato pper and aug ush tub pric dri r hammercussion fr hammercussion fold flig blid flig blid flig blid flig bliow flig ashbor bck roll	ger e lling ner on san ral aug nt aug ght au ght au e drilli er	et v et v er v per er: V-Bit er: TC-Bit ger ng	Firm	efusal) Level on nflow	ı Date	S F C F N F II F V	ELD TESTS PT Standard Penetration Test P Hand/Pocket Penetrometer CP Dynamic Cone Penetrometer SP Perth Sand Penetrometer IC Moisture Content BT Plate Bearing Test IP Borehole Impression Test ID Photoionisation Detector S Vane Shear; P=Peak, R=Resdual (uncorrected kPa)	SAMPLES B - D - Disturbec ES - ENvironm U - Thin wall MOISTURE D - D - Moist W - Wet PL PL - LL - Liquid lim	I sample ental samp tube 'undis nit nit	le F - Firm
Ref abb	er to ex reviatio	planator	/ notes asis of (for details of descriptions			CAR	RDI	NO (NSW/ACT) PTY L	TD		

(lno [°]				TEST PIT LOG SHEET
	ent: ject atic		F	Rado	e Land Pty Ltd cliffe, Wyee Develope nells Ridge Road, Bus	ment shells			Job No: 82219014 Hole No: TP022 Sheet: 1 of
			ee	atta	ched plan				Angle from Horizontal: -90° Surface Elevation:
					onne Excavator				Excavation Method: 400mm toothed bucket
Exc	ava	tior	n Di	mer	nsions:				Contractor: Cardno
Dat	e Ex	kcav	/ate	ed: 2	23/8/18				Logged By: HS Checked By: GA
E	cava	ation			Sampling & Testing				Material Description
Method	Resistance	Ctobility	Stability	Water	Sample or Field Test	Depth (m)	Graphic Log	Classification	SOIL TYPE, plasticity or particle characteristic, colour, secondary and minor components ROCK TYPE, grain size and type, colour, fabric & texture, strength, weathering, defects and structure
					D 0.10 - 0.20 m	+	لير علير علير علير علير ع لير علير علير علير علير علير علير علير علير لير علير علير		Clayey Silty SAND: fine to medium grained, dark brown, low plasticity clay, trace rootlets W
					D 0.60 - 0.70 m	0.5		SP	0.30m Clayey Sity SAND: fine to medium grained, brown, low plasticity clay W L 0.50m W L SAND: fine to medium grained, pale grey I
				sred	D 0.00 - 0.70 m	-		sw	V MD
EX	Stable	Not Encounte		- 1.0 - - -		sc	Clayey SAND: fine to medium grained, pale grey, low plasticity clay		
					PP 1.60 m =400 kPa	- - 1.5 - -		CL	Sandy CLAY: low plasticity, pale grey mottled orange, fine to medium grain sand RESIDUAL SOIL M (>PL) VSt to H
					PP 1.90 m =450 kPa	- 2.0			2.00m H SANDSTONE, medium to coarse grain, pale grey WEATHERED ROCK
V						-			mottled orange, trace shell, extremely weathered, extremely low strength 2.20m TERMINATED AT 2.20 m Virtual Refusal
						- 2.5			
						-			
EX R HA PT SC AH PS AD AD HF WE	METHOD PENETRATION EX Excavator bucket Ripper HA Hand auger Easy PT Push tube Firm SON Sonic drilling HA AH Air hammer F PS Percussion sampler AD/V Solid flight auger: V-Bit AD/T Solid flight auger: TC-Bit HFA Holow flight auger WB Washbore drilling R Rock roller					(No Resistar (Refusal) r Level or n · inflow		F F	FIELD TESTS SAMPLES SOIL CONSISTENCY SPT - Standard Penetration Test B - Bulk disturbed sample VS - Very Soft LP - Hand/Pocket Penetrometer D - Disturbed sample S Soft F DCP - Dynamic Cone Penetrometer D - Disturbed sample S S St Stiff PSP - Perth Sand Penetrometer U - Thin wall tube 'undisturbed' St Stiff VSt Very Stiff PBT - Plate Bearing Test D D D's RELATIVE DENSITY H - Hard PID - Photoionisation Detector W Wet U - Very Loose L Loose VS - Vane Shear; P=Peak, R=Resdual (uncorrected kPa) LL Liquid limit D - Dense W W Weisture content WD - Very Dense VD - Very Dense
Ref	er to e	explana	atory	notes f	or details of lescriptions		CAF		NO (NSW/ACT) PTY LTD

			arc	lno°						TE	ST PIT LOG SHEET
Pro	ent: oject catio	: n:	Rádo Busł	Land Pty Ltd liffe, Wyee De ells Ridge Ro	evelopement			Job No: 82219014		Η	ole No: TP023 Sheet: 1 of 1
Big	ige sitio	n: See	atta	ched plan	,			Angle from Horizontal: -90°		Surfac	e Elevation:
				onne Excavato	or			Excavation Method: 400mm t			
Exc	cava	tion D	imer	isions:							ctor: Cardno
Dat	te Ex	cavat	ed: 2	3/8/18				Logged By: HS		Check	ed By: GA
E	xcava	tion		Sampling &	-			Material Descrip	ion		1
Method	Resistance	Stability	Water	Sample Field Te	or Depth (J	Graphic Log	Classification	SOIL TYPE, plasticity or particle characteristic colour, secondary and minor components ROCK TYPE, grain size and type, colour, fabric & texture, strength, weathering, defects and structure	Moisture Condition	Consistency Relative Density	STRUCTURE & Other Observations
						د علد علد علد علد ع د علد علد علد علد ع د علد علد	L L	Sitty SAND: fine to medium grained, brown, low plasticity silt, trace rootlets	D		TOPSOIL
				D 0.20 - 0.30 m	-0.5		sc	Clayey SAND: fine to medium grained, brown-orange, low plasticity clay, trace fine to coarse, sub-angular gravel	D to M	MD	COLLUVIUM
EX		Stable	Not Encountered		- - - -1.0			0.80m Silty CLAY: low to medium plasticity, brown-orang	le		RESIDUAL SOIL
							CL- CI	1.30m SILTSTONE, pale grey mottled red, extremely 4.40m weathered, extremely low strength	M (>PL)	St	WEATHERED ROCK
								1.40m weathered, extremely low strength TERMINATED AT 1.40 m Virtual Refusal			
					1.5 - - - - - - 2.0 - - - - - - - - - - - - - - - - - - -						
					- 2.5 - - - -						-
E) R H/ P1 S0 AP AS AL AL HI W RF	Ripper VL Very Lasy (in Ness A. Hand auger Easy F Push tube F DN Sonic drilling H Hair hammer VH S Percussion sampler VH ON Solid flight auger: V-Bit Water Level D/T Solid flight auger: C-Bit water inflow B Washbore drilling water outflow			n Date	S F F II F	IP - Hand/Pocket Penetrometer D ES ICP - Dynamic Cone Penetrometer U ES ISP - Perth Sand Penetrometer U U IC - Moisture Content MOIST IBT - Plate Bearing Test D - IP - Borehole Impression Test M - ID - Photoionisation Detector W - IS - Vane Shear; P=Peak, PL -	Bulk disturb Disturbed sa Environmeni Thin wall tut URE Dry Moist	ample tal sampl be 'undist	e S - Soft F - Firm		

	\square	C	arc	lno°						TE	ST PIT LOG SHEET
	ent: oject:	1	Nyee	e Land Pty Ltd liffe, Wyee Develope	ment					Η	ole No: TP024
Loc	atio	n:	Busł	ells Ridge Road, Bu	shells			Job No: 82219014			Sheet: 1 of 1
				ched plan				Angle from Horizontal: -90°			e Elevation:
				onne Excavator				Excavation Method: 400mm toot			atom. Conduc
				nsions: 23/8/18				Logged By: HS			ctor: Cardno ed By: GA
	xcavat			Sampling & Testing				Material Description			,
	۵				Ê		E				
Method	Resistance	Stability	Water	Sample or Field Test	Depth (m)	Graphic Log	Classification	SOIL TYPE, plasticity or particle characteristic, colour, secondary and minor components ROCK TYPE, grain size and type, colour, fabric & texture, strength, weathering, defects and structure	Moisture Condition	Consistency Relative Density	STRUCTURE & Other Observations
					-	لد علد علد علد علد ع لد علد علد علد علد ع علد علد علد علد علد ع لد علد علد		Sity SAND: fine to medium grained, brown, low plasticity sit, trace rootlets	D to M		TOPSOIL
					- - 0.5		sc	Clayey SAND: fine to medium grained, brown-orange, low plasticity clay, trace fine to coarse, sub-angular gravel	м	MD	COLLUVIUM
EX		Stable	Not Encountered	PP 1.00 m =250 kPa	- - -		CL- CI	0.60m Sitty CLAY: low to medium plasticity, pale brown mottled orange, with lithorelics (sittstone)	M (>PL)	VSt	RESIDUAL SOIL
				PP 1.30 m =350 kPa	-			1.40m SILTSTONE, pale grey mottled red, extremely			- - WEATHERED ROCK
					- 1.5			sic random, pare grey induced red, extremely weathered, extremely low strength			-
					-			TERMINATED AT 1.60 m Virtual Refusal			
					-2.0						-
					-						
					- 2.5						-
					-						· · · · · ·
EX R HA PT SC AH PS AS	Ri Pi DN So A Ai S Pi S Si S Si S Si S A A FA Ho B W	kcavato pper and aug ush tub onic dril r hamm ercussio nort spi olid fligl	ger e ling ler on sam ral auge nt auge nt auge ght au e drillir	pler er er: V-Bit ger	(No Resistar (Refusal) er Level on		S F F F	P - Hand/Pocket Penetrometer D - Dis CP - Dynamic Cone Penetrometer U - Th SP - Perth Sand Penetrometer U - Th IC - Moisture Content MOISTURE BT - Plate Bearing Test D - Dr ID - Photoionisation Detector M - Mu ID - Photoionisation Detector W - We ID - Paradual (uncommetaria (UD)) - Paradual (uncommetaria (UD))	/ ist et astic limit	imple tal sampl be 'undist	e F - Soft
Ret	fer to ex	planatory	notes f	or details of escriptions		CAF		NO (NSW/ACT) PTY LTD			

10 2.016 LIB GLB Log CARDNO NON-CORED 82219014 RADCLIFFE, WYEE DEVELOPMENT.GPJ <</ r>

	\square	C	arc	dno [°]							ST PIT LOG SHEET
Clie Pro	ent: ject:		Rado	e Land Pty Ltd cliffe, Wyee Develope						H	ole No: TP025
	atio	n:	Busł	nells Ridge Road, Bus	hells			Job No: 82219014			Sheet: 1 of 1
				ched plan tonne Excavator				Angle from Horizontal: -90° Excavation Method: 400mm toot			e Elevation:
				nsions:				Excavation Method. 400min tool			ctor: Cardno
				23/8/18				Logged By: HS			ed By: GA
Ex	cavat	ion		Sampling & Testing				Material Description			
Method	Resistance	Stability	Water	Sample or Field Test	Depth (m)	Graphic Log	Classification	SOIL TYPE, plasticity or particle characteristic, colour, secondary and minor components ROCK TYPE, grain size and type, colour, fabric & texture, strength, weathering, defects and structure	Moisture Condition	Consistency Relative Density	STRUCTURE & Other Observations
				D 0.10 - 0.20 m	+	لد علد علد علد علد ع لد علد علد علد علد ع لد علد علد		Silty SAND: fine to medium grained, brown, low plasticity silt, trace rootlets			TOPSOIL
					+	على على على على لا على على على على على لا على على على على على لا على على		0.30m	D		
EX		Stable	Not Encountered		- - 0.5 - - -		sc	Clayey SAND: fine to medium grained, brown-orange, low plasticity clay, trace fine to coarse, sub-angular gravel	м	MD	COLLUVIUM
		Sta	Not		- 1.0 - -		CL-	1.00m Sitty CLAY: low to medium plasticity, pale brown mottled orange, with lithorelics (sittstone)			RESIDUAL SOIL
				PP 1.50 m =400 kPa	- 1.5 -		CI	1.70m	M (>PL)	VSt to H	
					-			SILTSTONE, pale grey mottled red, extremely weathered, extremely low strength			WEATHERED ROCK
						<mark></mark>		1.90m TERMINATED AT 1.90 m Virtual Refusal			
					- 2.0 - -						
					- - 2.5 - -						
ME EX R HA	Ri	kcavato pper		E Easy		nce)	S H	P - Hand/Pocket Penetrometer D - Dis	sturbed sa	eed sampl ample tal sampl	S - Soft
PT SC AH PS AD AD HF WE	HA Hand auger PT Push tube SON Sonic drilling AH Air hammer PS Percussion sampler AD/V Solid flight auger: V-Bit AD/T Solid flight auger: TC-Bit HFA Hollow flight auger WB Washbore drilling RR Rock roller					Date	F N F II	CP - Dynamic Cone Penetrometer U - Th SP - Perth Sand Penetrometer MOSTURE C - Moisture Content MOSTURE BT - Plate Bearing Test D - Dn ID - Photoionisation Detector W - We S - Vane Shear; P=Peak, PL - Pla D - Dn Plate Bearing test	in wall tul : vist et	be 'undisl	
				for details of descriptions		CAF	RD	NO (NSW/ACT) PTY LTD			

()	C	arc	Ino °							TE	ST PIT LOG SHEET
P		nt: ect: ation		Rådo	e Land Pty cliffe, Wye	y Ltd ee Developer je Road, Bus	nent			Job No. 82240044		H	ole No: TP026
					ched plar		lielis			Job No: 82219014 Angle from Horizontal: -9	0°	Surface	Sheet: 1 of 1 e Elevation:
					onne Exc					Excavation Method: 400n			
					nsions:								ctor: Cardno
				ed: 2	23/8/18					Logged By: HS		Checke	ed By: GA
	Exc	avati	on		Sampl	ing & Testing			-	Material De	scription		
Method		Resistance	Stability	Water		ample or ield Test	Depth (m)	Graphic Log	Classification	SOIL TYPE, plasticity or particle characte colour, secondary and minor compone ROCK TYPE, grain size and type, colo fabric & texture, strength, weathering defects and structure	bur, tā jā	Consistency Relative Density	STRUCTURE & Other Observations
A	•				D 0.10 - 0.2	0 m	_	لد علد علد علد علد ع لد علد علد علد علد ع لد علد علد علد علد ع		Silty SAND: fine to medium grained, brown, plasticity silt, trace rootlets	, low M		TOPSOIL -
							+	له علم علم علم علم ع له علم علم		0.25m			
				Ţ			- - - 0.5			Clayey SAND: fine to medium grained, brown-orange, low plasticity clay, trace fine coarse, sub-angular gravel	to		COLLUVIUM
EX	i		Stable	Not Encountered			-		SC		D to M	MD	-
							-			0.90m			RESIDUAL SOIL
2000							- 1.0		CL- CI	Silty CLAY: low to medium plasticity, pale bu mottled orange, with lithorelics (siltstone)	M (>PL)	VSt	-
					PP 1.10 m :	=320 kPa				1.20m			
							-			SILTSTONE, pale grey mottled red, extrem weathered, extremely low strength	nely		WEATHERED ROCK
								<u> </u>		1.40m TERMINATED AT 1.40 m Refusal			
5							- 1.5						-
200							F						-
2							-						-
							-						-
							F						-
2							-2.0						-
20							-						-
5													-
							-						-
													-
							-2.5						-
Î							F						-
							-						-
							F						-
5							ŀ						-
						DENIETDATION							
	EX R HA PT SON	Rip Ha Pu N So	per nd aug sh tub nic dril	e ling	et	PENETRATION VE Very Easy (* E Easy F Firm H Hard VH Very Hard (F	No Resistar	nce)	S H C F	SPT - Standard Penetration Test B HP - Hand/Pocket Penetrometer D DCP - Dynamic Cone Penetrometer E PSP - Perth Sand Penetrometer U	 Disturbed sa S - Environment 	ample tal sample	e S - Soft F - Firm
Ϊ I	AH PS AS	Pe		er on sam al aug		WATER	Level on	Date	F	PBT - Plate Bearing Test	- Dry		RELATIVE DENSITY
	AD/\ AD/1 HFA WB RR	V Sol T Sol Ho Wa	id fligh id fligh low fli	nt auge nt auge ght au e drillir	er: V-Bit er: TC-Bit ger	water i	nflow	Dale	F	MP - Borehole Impression Test PID - Photoionisation Detector /S - Vane Shear; P=Peak, R=Resdual (uncorrected kPa)	/ - Wet L - Plastic limit L - Liquid limit	ntent	VL - Very Loose L - Loose MD - Medium Dense D - Dense VD - Very Dense
	Refer	r to exp	lanatory	notes f	for details of lescriptions			CAF	RD	NO (NSW/ACT) PTY LTI)		

0/0.2.01.6.LIB.G.L.B.G. CARDNO NON-CORED 2219014 RADCLIFFE, WYEE DEVELOPMENT GPJ <- Chrawingfile>> 1209/2018/0.12 10.0.000 Dagel AGS RTA, Photo

Clie		1	Nve	e Land Pty Ltd								ST PIT LOG SHEE
Proj Loca	atior	n: I	Busl	cliffe, Wyee Developer hells Ridge Road, Bus	nent hells			Job No: 82219014	L			Sheet: 1 of
3ido Sosi	tion	: See	atta	iched plan				Angle from Horizo		:	Surfac	e Elevation:
				tonne Excavator				Excavation Metho	d: 400mm too			
				nsions:				Longood Dyn. US				ictor: Cardno
	cavati		ea: z	23/8/18 Sampling & Testing				Logged By: HS	aterial Description		Спеск	ed By: GA
	Javau			Sampling & resulig			_	IV				
Method	Resistance	Stability	Water	Sample or Field Test	Depth (m)	Graphic Log	Classification	DIL TYPE, plasticity or partic colour, secondary and mino ROCK TYPE, grain size an fabric & texture, strength, defects and struc	r components d type, colour, weathering,	Moisture Condition	Consistency Relative Density	STRUCTURE & Other Observations
				D 0.10 - 0.20 m	_	لد علد علد علد علد ع لد علد علد علد علد علد لد علد علد علد علد ع	-	Silty SAND: fine to medium gra plasticity silt, trace rootlets	ined, brown, low	м		TOPSOIL
			ntered		- 0.5 		SC	Clayey SAND: fine to medium brown-orange, low plasticity ck coarse, sub-angular gravel	grained, y, trace fine to	M	MD	COLLUVIUM
EX		Stable	Not Encountered	PP 1.30 m =250 kPa	- - - 1.5 - - - - - - - -		CL-CI	Silty CLAY: low to medium plas mottled orange, with lithorelics	(siltstone)	M (>PL)	VSt	RESIDUAL SOIL
•					- - - 2.5 -			TERMINATED AT 2.30 m Virtual Refusal	rea, extremely gth			
EX R HA PT SOI AH PS AD/ AD/ HF/	Rip Ha Pu N So Air Pe Sh V So T So A Ho	cavator oper ind aug ish tub nic dril hamm rcussic iort spin lid fligh lid fligh lid fligh	ger e ling ler on san ral aug nt aug ght aug	ppler ger er: V-Bit grger	No Resistar Refusal) Level on nflow		S H C	ESTS Standard Penetration Test Hand/Pocket Penetrometer Dynamic Cone Penetrometer Moisture Content Plate Bearing Test Borehole Impression Test Photoionisation Detector Vane Shear; P=Peak,	P - Di ES - Er U - Tr MOISTURI D - Di M - M W - W PL - Pi	ulk disturb isturbed sa nvironmen nin wall tul E ry oist et astic limit	ample tal sampl	te S - Soft turbed' St - Stiff VSt - Stiff H - Hard RELATIVE DENSITY VL - Very Loose L - Loose MD - Medium Denset
R Ripper HA Hand auger PT Push tube SON Sonic drilling AH Air hammer PS Percussion sampler AD/V Solid flight auger: V-Bit AD/V Solid flight auger: V-Bit AD/V Solid flight auger: TC-Bit HFA Holow flight auger WB Washbore drilling RR Rock roller								Dynamic Cone Penetromet Perth Sand Penetrometer Moisture Content Plate Bearing Test Borehole Impression Test Photoionisation Detector	er ES - Er U - Tr MOISTURI D - D M - M W - M PL - Pi LL - Li W - M	nvironmen hin wall tul E ry oist 'et	tal sampl	le F - Firm turbed' St - Stiff VSt - Very Stiff H - Hard RELATIVE DENSITY VL - Very Loose L - Loose

Clie Proi	nt: ect:	١	Nyee	e Land Pty Ltd cliffe, Wyee Developen	nent								ST PIT LOG SHEE ole No: TP02
Loca	atio	n: I	Busł	nells Ridge Road, Busl	nells				Job No: 82219014				Sheet: 1 of
				iched plan					Angle from Horizontal:				e Elevation:
				tonne Excavator					Excavation Method: 400	imm tootn			ctor: Cardno
				23/8/18					Logged By: HS				ed By: GA
Ex	cavat	ion		Sampling & Testing					Material D	escription			
Method	Resistance	Stability	Water	Sample or Field Test	Depth (m)	Graphic Log	Classification		DIL TYPE, plasticity or particle charac colour, secondary and minor compo ROCK TYPE, grain size and type, cc fabric & texture, strength, weatheri defects and structure	nents plour,	Moisture Condition	Consistency Relative Density	STRUCTURE & Other Observations
•	£					للد عليہ عليہ عليہ عليہ ع عليہ عليہ عليہ	Ö		Sitty SAND: fine to medium grained, brov plasticity sitt, trace rootlets		D to M	0	TOPSOIL
				D 0.10 - 0.20 m	Ŧ			0.20m	Clayey SAND: fine to medium grained,				COLLUVIUM
		υ	Not Encountered		- - 0.5 - - - - - - - 1.0		SC		brown-orange, low plasticity clay, trace fi coarse, sub-angular gravel	ne to	М	MD	
Ś		Stable	Not Enc	PP 1.50 m =250 kPa	- - 1.5 - -				Silty CLAY: low to medium plasticity, pale mottled orange, with lithorelics (siltstone)				RESIDUAL SOIL
					- - 2.0 - - -		CL- CI				M (>PL)	VSt	
ME"	ТНОД		- huck	PENETRATION	-2.5-			FIELD TE	TERMINATED AT 2.50 m Target depth STS Standard Penetration Test	SAMPLES B - Bulk	dicturb	ad came!	e VS - Very Soft
EX Excavator bucket VE Very Easy (No Resistance) R Ripper E Easy HA Hand auger F Firm PT Push tube H Hard SON Sonic drilling VH Very Hard (Refusal) AH Air hammer PS Percussion sampler AD/V Solid flight auger: V-Bit Mashbore drilling Water Level on Date HFA Hollow flight auger: TC-Bit water inflow water inflow WB Washbore drilling water outflow Image: Water outflow							F F F II F	HP - DCP - PSP - MC - PBT - MP - PID - /S -	Hand/Pocket Penetrometer Dynamic Cone Penetrometer Perth Sand Penetrometer Moisture Content Plate Bearing Test Borehole Impression Test Photoionisation Detector Vane Shear: P=Peak	D - Distu ES - Envir U - Thin MOISTURE D - Dry M - Moist W - Wet PL - Plast LL - Liqui	rbed sa onment wall tub	imple al sample be 'undist	e turbed' St - Stiff VSt - Very Stiff H - Hard RELATIVE DENSITY VL - Very Loose L - Loose MD - Medium Dens D - Dense
	Ro	ock rolle	er	for details of					NSW/ACT) PTY LT		ure con	iterit	

lient		Wy	r dno ° ee Land F	Pty Ltd									TE H	ole No: TP02
Projec .ocati		Ra	dcliffe, W shells Ric	yee De	velopen ad. Busl	nent hells				Job No: 82219014				Sheet: 1 of
			tached pl							Angle from Horizontal	· -90°		Surfac	e Elevation:
			5 tonne Ex		r					Excavation Method: 4				
		-	ensions:		-									ctor: Cardno
			: 24/8/18							Logged By: HS				ed By: GA
	vation		-	pling & T	esting						al Description			
Method	Ctability	Mator	Sam	ple or I Test	(blows per 150 mm	(Depth (m)	Graphic Log	Classification	s	OIL TYPE, plasticity or particle cha colour, secondary and minor com ROCK TYPE, grain size and type fabric & texture, strength, weath defects and structure	ponents , colour,	Moisture Condition	Consistency Relative Density	STRUCTURE & Other Observations
 ▲	r				1 3 6 12	:	ليد عليد عليد عليد عليد ع	ö		Silty SAND: fine to medium grained, g	grey, low			TOPSOIL
			D 0.10 - 0).20 m		-	له علم علم علم علم علم علم علم علم علم علم علم علم علم علم علم علم علم علم			plasticity silt, with rootlets		D to M		
			D 0.30 - 0).40 m		-			0.30m	Clayey SAND: fine to medium grainer	d,			COLLUVIUM
						- - 0.5 - - -		SC		yeliow-brown, low plasticity clay		М	MD	
EX	or to					- 1.0 - - -			1.00m	Silty CLAY: low to medium plasticity, g orange, with lithorelics (siltstone)	grey mottled			RESIDUAL SOIL
						- 1.5 - - - - 2.0		CL- CI				M (>PL)	St	
						-			2.20m					
		• ••••				ľ			£.£VIII	SILTSTONE, pale grey mottled red, e	extremely			WEATHERED ROCK
♥		1	5		+				2.30m	weathered, extremely low strength TERMINATED AT 2.30 m				
						- - 2.5 - -				Virtual Refusal				
METH EX R HA PT SON AH PS AD/V AD/T HFA WB	R Ripper HA Hand auger PT Push tube SON Sonic drilling AH Air hammer PS Percussion sampler AD/V Solid flight auger AD/V Solid flight auger KAD/V Solid flight auger KAD/V Solid flight auger KAD/V Solid flight auger							S H D P M P I P	IELD T PT - PCP - SP - IC - BT - MP - ID - 'S -	ESTS Standard Penetration Test Hand/Pocket Penetrometer Dynamic Cone Penetrometer Perth Sand Penetrometer Moisture Content Plate Bearing Test Borehole Impression Test Photoionisation Detector Vane Shear; P=Peak, R=Resdual (uncorrected kPa)	D - Dis ES - En U - Thi MOISTURE D - Dry M - Mo W - We PL - Pla LL - Liq	ist	ample tal sampl be 'undist	le F - Firm

Cation: Businelis Ridge Road, Businelis Job Nr. 8221901 Shert More: See attacked plan Angle from Horizontal: Contractor: Contr) C	ar	dno°							TE	ST PIT LOG SHEE
Station: Angle from Horizontal: Surface Elevation: Uniter Type: Storme Excavation Method: 400m toothed backet Io: Excavation Method: 400m toothed backet Io: Excavation Method: Contractor: Io: Excavation Method: Contractor: Io: Excavation Method: Sampling & Testing Io: Excavation Method: Io: Excavation Method: Io: Excavation Method: Io: Excavation Method:	lient: roject:	:	Wye Rad	e Land Pty Lto cliffe, Wyee D	d eveloperr	nent					H	ole No: TP03
Chine Type: 5 tome Ecavator Ecavation Method: 400mm todhed bucket Caration Dimension: Contractor: Cardno Contractor: 248/18 Checked By: CA Sampling & Samplin		on:	Bus	hells Ridge Ro								Sheet: 1 of
Constructor: Cardino to Excavator: 248/19 Constructor: Cardino to Excavator: 248/19 Constructor: Cardino to Excavator: 248/19 Support Sampling & Testing Fed Test Sam									•			e Elevation:
Legged By: HS Checked By: GA Scowelton Sampling & Testing By By B					or				Excavation Method: 400r			ctor: Cardno
Sampling & Testing Sample of Field Test Sample of Field Test Bit does not an									Loaged By: HS			
all or all or all or all or all all<				1	Testing							,
all or all or all or all or all all<	0					Ê		E				
Bit Start Product gramed gr	Resistance	Stability	Water		`per 150 mm	<i>′</i>	Graphic Log	Classificatic	colour, secondary and minor compone ROCK TYPE, grain size and type, col fabric & texture, strength, weatherin	teristic, nents entry lour, signed ng, WO	Consistency Relative Density	STRUCTURE & Other Observations
embody above <				D 0.10 - 0.20 m	1 1 1 1	-	علت علت ع للت علت علت علت علت ع للت علت علت					TOPSOIL
Big Big <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td>له علم علم علم علم ع</td> <td></td> <td></td> <td>М</td> <td></td> <td></td>						-	له علم علم علم علم ع			М		
9 0.60 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>علد علد ع</td><td></td><td></td><td></td><td></td><td></td></t<>							علد علد ع					
B B <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Clayey SAND: fine to medium grained, yellow-brown, low plasticity clay</td> <td></td> <td></td> <td>COLLUVIUM</td>									Clayey SAND: fine to medium grained, yellow-brown, low plasticity clay			COLLUVIUM
B B <td></td>												
0000 Sty CLAV by to the third statisticity gray motified RESIDUAL SOL 0000 Sty CLAV by the third statisticity gray motified N(PPL) 0000 Sty CLAV by the third statisticity gray motified N(PPL) 0000 Sty CLAV by the third statisticity gray motified N(PPL) 0000 Sty CLAV by the third statisticity gray motified N(PPL) 0000 Statisticity N(PPL) 00000 Statisticity N(PPL) 00000 Statisticity N(PPL) 00000 Statisticity N(PPL) 00000 N(PPL) N(PPL) 000000 N(PPL) N(PPL) 0000000 N(PPL) N(PPL) 000000000000000000000000000000000000						-0.5		sc		D to M	MD	
9 9 1 <td></td> <td></td> <td></td> <td></td> <td></td> <td>$\left \right$</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						$\left \right $						
9 9 1 <td></td> <td></td> <td></td> <td></td> <td></td> <td>$\left \right$</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						$\left \right $						
g g <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.80m</td> <td></td> <td></td> <td></td>									0.80m			
B B Image: PB in the second state of the sec										mottled		RESIDUAL SOIL
B B Image: PB in the second state of the sec												
Image: Provide angle in the provide status of the provid	Ś	able				- 1.0						
Image: Provide adding of the second stand point of the second st	1	Sta				-					St	
Image: Provide adding of the second stand point of the second st						_]				
Image: Provide adding of the second stand point of the second st												
Image: Statistic state						-				M (>PL)		
ETHOD PENETRATION SILTSTONE. pale grey motified red, extremely weathered,						-						
Image: Provide diffing the three description of the three descri						- 1.5						
Image: Provide diffing the three description of the three descri												
Perform											VSt to H	
Perform						-						
Image: Second problem Image: Second pro						-						
Image: Solution of the second seco				-		-						
Image: Solution product Image: Solution product Image: Solution product Solution			t 1.9m			-20				meiy		WEATHERED ROOK
ETHOD PENETRATION FIELD TESTS SAMPLES SAMPLES SOLICONSIST Image: Register and the second seco	,		ereda			2.0			2.10m			
Image: Solution of the second seco			counte			1			TERMINATED AT 2.10 m			
Image: Solution of the second seco			ne wc			F						
Image: Solution of the second state			infle			F						
Image: Solution of the second state of the second stat						Ļ						
Image: Solution of the state of the st					liii							
NETHOD VE Very Easy (No Resistance) FIELD TESTS SAMPLES SOIL CONSIST X Excavator bucket IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII						-2.5						
X Excavator bucket VE Very Easy (No Resistance) SPT SPT Standard Penetration Test B B Bulk disturbed sample VS Very Fright A Hand auger F Firm HDP Hand/Pocket Penetrometer D Disturbed sample S Soft Soft Soft Soft Soft Firm F Firm D Disturbed sample Soft Soft Soft Soft Soft Soft Soft F Firm D Disturbed sample Soft						F						
X Excavator bucket VE Very Easy (No Resistance) SPT SPT Standard Penetration Test B B Bulk disturbed sample VS Very Fright A Hand auger F Firm HDP Hand/Pocket Penetrometer D Disturbed sample S Soft Soft Soft Soft Soft Firm F Firm D Disturbed sample Soft Soft Soft Soft Soft Soft Soft F Firm D Disturbed sample Soft						\mathbf{F}						
X Excavator bucket VE Very Easy (No Resistance) SPT SPT Standard Penetration Test B B Bulk disturbed sample VS Very Fright A Hand auger F Firm HDP Hand/Pocket Penetrometer D Disturbed sample S Soft Soft Soft Soft Soft Firm F Firm D Disturbed sample Soft Soft Soft Soft Soft Soft Soft F Firm D Disturbed sample Soft												
X Excavator bucket VE Very Easy (No Resistance) SPT SPT Standard Penetration Test B B Bulk disturbed sample VS Very Fright A Hand auger F Firm HDP Hand/Pocket Penetrometer D Disturbed sample S Soft Soft Soft Soft Soft Firm F Firm D Disturbed sample Soft Soft Soft Soft Soft Soft Soft F Firm D Disturbed sample Soft												
X Excavator bucket VE Very Easy (No Resistance) SPT SPT Standard Penetration Test B B Bulk disturbed sample VS Very Fright A Hand auger F Firm HDP Hand/Pocket Penetrometer D Disturbed sample S Soft Soft Soft Soft Soft Firm F Firm D Disturbed sample Soft Soft Soft Soft Soft Soft Soft F Firm D Disturbed sample Soft						Γ						
t Ripper VL Very Lasy (No Resistance) HP - Hand/Pocket Penetrometer D - Disturbed sample S - Soft A Hand auger F Firm DCP Dynamic Cone Penetrometer D - Disturbed sample S - Soft T Push tube H Hard PSP Perth Sand Penetrometer U - Thin wall tube 'undisturbed' S - Stift ON Sonic drilling VH Very Hard (Refusal) PSP Perth Sand Penetrometer MOISTURE MOISTURE S - Stiff S Percussion sampler S Short spiral auger Water Level on Date PBT Plate Bearing Test D - Dry RELATIVE DEI D/V Solid flight auger: V-Bit Shown PID Photoionisation Detector W Wet VL Very	METHOD	D		PE	NETRATION	1		F	ELD TESTS S	SAMPLES	I	SOIL CONSISTENCY
A Hand auger F Firm DCP Dynamic Cone Penetrometer U - Es - Environmental sample F - F - Stiff ON Sonic drilling H Hard PSP Perth Sand Penetrometer WOISTURE WOISTURE S S S S Nonis tail auger MOISTURE MOISTURE H H Hard D/V Solid flight auger: V-Bit Vater Level on Date IMP - Plotoionisation Detector M - Dry RELATIVE DEI D/V Solid flight auger: V-Bit - - PID - Photoionisation Detector W Wet L - Very	R Ri	Ripper		*-		lo Resistar	ice)		P - Hand/Pocket Penetrometer	D - Disturbed sa	ample	
H Air hammer MC - Moisture Content MOISTURE H - Hard S Percussion sampler S Short spiral auger PBT - Plate Bearing Test D - Dry RELATIVE DEI D/V Solid flight auger: V-Bit Shown PID - Borehole Impression Test M - Moist VL - Very D/T Solid flight auger: V-Bit Shown PID - Photoionisation Detector W - Wet L - Loss	HA Ha PT Pu	land au Push tu	ibe	F	Firm Hard			D	CP - Dynamic Cone Penetrometer	ES - Environmen	tal sample	e F - Firm turbed' St - Stiff
S Short spiral auger D D Dry RELATIVE DEI D/V Solid flight auger: V-Bit Shown IMP - Brochole Impression Test M - Moist VL - Very D/T Solid flight auger: TC-Bit - PID - Photoionisation Detector W - Wet - Loss	AH Ai	Nir hamı	mer			efusal)		M	C - Moisture Content	MOISTURE		
D/T Solid light auger TC-Bit snown PID - Photoionisation Detector W - Wet L - Loose	AS SI	Short sp	piral au	ger	Vater I		Date			M - Moist		RELATIVE DENSITY VL - Very Loose
IFA Hollow flight auger / F- water inflow / VS - Vane Shear: P=Peak. / PL - Plastic limit / MD - Mediu	AD/T So	Solid flig	ght aug	er: TC-Bit				P	ID - Photoionisation Detector	W - Wet PL - Plastic limit		L - Loose
R undowing agent agent water outflow R=Residual (uncorrected kPa) LL Liquid limit D - Dens	WB W	Vashbo	ore drill	ng -					B-Resdual (uncorrected kPa)	LL - Liquid limit	ntent	D - Dense
efer to explanatory notes for details of obreviations and basis of descriptions CARDNO (NSW/ACT) PTY LTD	Refer to ex abbreviatio	explanato ons and	bry notes basis of	for details of descriptions			CAR	RDI	NO (NSW/ACT) PTY LT	D		

	G	arc	lno [°]							TE	ST PIT LOG SHEET
Client: Project:	١	Nyee Rado	e Land Pty Ltd liffe, Wyee De	evelopem	ent					Η	ole No: TP031
Locatior	n: I	Busł	nells Ridge Ro					Job No: 82219014			Sheet: 1 of 1
			ched plan					Angle from Horizontal: -90°			e Elevation:
			onne Excavat	or				Excavation Method: 400mm			· • •
Excavati Date Exc								Logged By: HS			ed By: GA
Excavati		<u></u>	Sampling &	Testina				Material Descrip		Oneck	
		-			Ê		c				
Method Resistance	Stability	Water	Sample or Field Test	(blows per 150 mm)	Depth (m)	Graphic Log	Classification	SOIL TYPE, plasticity or particle characteristic colour, secondary and minor components ROCK TYPE, grain size and type, colour, fabric & texture, strength, weathering, defects and structure	Moisture Condition	Consistency Relative Density	STRUCTURE & Other Observations
1			D 0.10 - 0.20 m		-	لله علم علم علم علم علم علم علم علم علم علم علم لله علم علم		Sitty SAND: fine to medium grained, grey, low plasticity sit, with rootlets			TOPSOIL
					-	على على على ع لي على على على على على ع لي على على			D		
								0.30m Clayey SAND: fine to medium grained, yellow-brown, low plasticity clay			COLLUVIUM
					-0.5		sc		D to M	MD	
					-			0.70m Silty CLAY: low to medium plasticity, grey mottler orange, with lithorelics (siltstone)	t t		RESIDUAL SOIL
					-			orange, munitionence (anatorie)		St	-
EX -	Stable				- 1.0						
							CL-		M (>PL)		
				vR 			CI			VSt to H	
					- 1.5 - -						
		►			-			1.90m SILTSTONE, pale grey mottled red, extremely			WEATHERED ROCK
*		at 1.9m			-2.0-			2.00m weathered, extremely low strength TERMINATED AT 2.00 m			
		inflow encountered at						Virtual Refusal			
					-						
R Rip HA Ha PT Pu SON So AH Air PS Pe AS Sh AD/V So AD/T So HFA Ho	EX Excavator bucket R Ripper HA Hand auger PT Push tube SON Sonic drilling AH Air hammer PS Percussion sampler AS Short spiral auger: V-Bit AD/V Solid flight auger: TC-Bit HFA Hollow flight auger W Water Level on shown W water inflow W aver outflow					S F F F	P Hand/Pocket Penetrometer D CP Dynamic Cone Penetrometer U SP Perth Sand Penetrometer U IC Moisture Content MOIST BT Plate Bearing Test D ID Borehole Impression Test M ID Photoionisation Detector W S Vane Shear; P=Peak, PL	Bulk disturb Disturbed s Environmen Thin wall tu TURE Dry Moist Wet Plastic limit Liquid limit	ample ital sampl be 'undis	Ie S - Soft F - Firm	
RR Ro	ock rolle	er						· · · · · · · · · · · · · · · · · · ·	Moisture co	nient	VD - Very Dense
Refer to exp	planatory	/ notes f asis of d	or details of lescriptions			CAF	RDI	NO (NSW/ACT) PTY LTD			

		dno								ST PIT LOG SHEET
:: ct:	Rade	cliffe, Wyee I	Developem	ent					H	ole No: TP032
			Road, Bush	ells			Job No: 82219014			Sheet: 1 of 1
			tor				-			e Elevation:
										ctor: Cardno
Exca	vated:	24/8/18					Logged By: HS	(Checke	ed By: GA
vation		Sampling 8	& Testing				Material Description	ı		
Resistance	Water	Sample or Field Test	(blows per 150 mm)	Depth (m)	Graphic Log	Classification	SOIL TYPE, plasticity or particle characteristic, colour, secondary and minor components ROCK TYPE, grain size and type, colour, fabric & texture, strength, weathering, defects and structure	Moisture Condition	Consistency Relative Density	STRUCTURE & Other Observations
				-	على .		Silty SAND: fine to medium grained, grey, low plasticity silt, with rootlets	D		TOPSOIL
				- - 0.5 - -		SC	Clayey SAND: fine to medium grained, yellow-brown, low plasticity clay	D to M	MD	COLLUVIUM RESIDUAL SOIL
Charle	Violation Not Encountered			- - 1.0 - - - - 1.5		27		M (>PL)	St	
				- - - 2.0 - -		G	2.50m		VSt to H	
				2.5 - -			TERMINATED AT 2.50 m Target depth			
R Ripper HA Hand auger PT Push tube SON Sonic drilling AH Air hammer PS Percussion sampler AS Short spiral auger AD/V Solid flight auger: V-Bit AD/T Solid flight auger: TC-Bit HFA Head						SI H D P M P I N P	PT - Standard Penetration Test B - B P - Hand/Pocket Penetrometer D - D CP - Dynamic Cone Penetrometer U - TI SP - Perth Sand Penetrometer U - TI C - Moisture Content D - D BT - Plate Bearing Test D - D IP - Borehole Impression Test M - M D - Photoionisation Detector W - W S - Vane Shear, P=Peak, PL - Li	ulk disturbd isturbed sa nvironment nin wall tub E ry oist /et lastic limit quid limit	ample tal sampl be 'undist	e S - Soft F - Firm
	Children Construction Construct	CD CD CD CD CD CD CD CD CD CD	Ct: Radcliffe, Wyee I ion: Bushells Ridge F on: See attached plan ne Type: 5 tonne Excava ation Dimensions: Excavated: 24/8/18 vation Sampling A attack Sampling A attack	Rádcliffe, Wyée Developemu ion: See attached plan ne Type: 5 tonne Excavator ation Dimensions: Excavated: 24/8/18 vation Sampling & Testing and the sample or Field Test (blows per 150 mm) 1 3 6 12 age of the sample or Field Test (blows per 150 mm) 1 3 6 12 age of the sample or Field Test (blows per 150 mm) 1 3 6 12 age of the sample or Field Test (blows per 150 mm) 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Cit: Radcliffe, Wyee Developement Bushells Ridge Road, Bushells cn: Bushells Ridge Road, Bushells cn: Sample or Field Test (i) ation Dimensions: Excavated: 24/8/18 Sample or Field Test (i) (ii) ation Dimensions: Excavated: 24/8/18 Sample or Field Test (b)ows per 150 mm) (ii) (ii) ation Dimensions: Excavated: 24/8/18 Sample or Field Test (b)ows per 150 mm) (ii) (ii) ation Dimensions: Excavate Sample or Field Test (b)ows per 150 mm) (ii) (ii) ation Dimensions: Excavate Sample or Field Test (b)ows per 150 mm) (iii) (iii) ation Dimensions: Excavate Base (iii) Base (iii) Field Test (iii) (iii) ation Dimensions: Excavate Base (iii) Base (iii) Base (iii) (iii) (iii) (iii) ation Dimensions: Excavate Base (iii) Base (iii) Base (iii) Base (iii) Excavate ation Dimensions: Excavate Base (iii) Base (iii) Base (iii) Excavate Excavate ation Dimensions: Excavate Base (iiii) Excavate Excavate <	Et: Radcliffe, Wyée Development Bushells Ridge Road, Bushells on: See attached plan ne Type: 5 tonne Excavator atton Dimensions: Excavated: 24/8/18 vation Sample or Field Test (blows per 150 mm) g g g g g g g g g g g g g g g g g g g	Radcliffe, Wyże Developement ion: Bushells Ridge Road, Bushells on: See attached plan ine Type: 5 tonne Excavator atton Dimensions: Excavated: 24/8/18 vation Sample or Field Test ing Der 150 mm) (Der 2000 Signed Signe	Badcilife, Wyse Development ion: Buschalls Ridge Road, Bushells Job No: 8221914 On: See attached plan Angle from Horizontal: -90° Excavation Dimensions: Excavated: 24/8/18 Excavation Method: 400mm too attom Dimensions: Excavated: 24/8/18 Image: Semple or Field Test (Done for for for for for for for for for for	City Exacle life, Wyee Developmentition: Job No: 82219014 cor: Bushells Job No: 82219014 cor: Excavator Excavator attion Dimensions: Excavation Method: 400mm toothed: bushells attion Sampling & Testing Logged By: HS attion Sampling & Testing Use of the second secon	Image: Search Study Excession Job No: 82219014 on: Sea ratached plan Angle from Horizontal: -90* Surface on: Search Studye Road, Bushells Job No: 82219014 Surface on: Search Studye Road, Bushells Angle from Horizontal: -90* Surface on: Search Studye Road, Bushells Job No: 82219014 Concertance on: Search Studye Road, Bushells Job No: 82219014 Concertance or Systematic Attract Studye Road, Bushells Job No: 82219014 Concertance or Systematic Attract Studye Road, Bushells Job No: 82219014 Concertance or Systematic Attract Studye Road, Bushells Job No: 82219014 Concertance or Systematic Attract Studye Road, Bushells Logged By: HS Concertance or Systematic Attract Studye Road Substance Notes Substance or Systematic Attract Studye Road Substance Substance Substance or Systematic Attrace Substance Substance

Projection Said (Iffe, Wyke Development Job No: 82219014 Surface Elevation: Section: Surface Searched plan Angle from Morizontal: 40° Surface Elevation:	\square			dno [°]								ST PIT LOG SHEET
Bit Monito Type: Solution Linear L		t:	Rado	cliffe, Wyee De	evelopem						Η	
Machine Type: 5 tome Eccavator Excavator Method: 400m toolfed buckt Securation Method: 400m toolfed buckt Contractor: Cardio Date Eccavator: Samping & Tesma Contractor: Cardio Date Securation Method: 400m toolfed by: HS Conclude By: HS Conclude By: HS Conclude By: HS Demonstration Samping & Tesma Securation Method: 400m toolfed by: HS Conclude By: HS Conclude By: HS Conclude By: HS Securation Method: 400m toolfed by: HS Samping & Tesma Securation Method: 400m toolfed by: HS Conclude By: HS Conclusions Conclusions Securation Method: 400m toolfed by: HS					ad, Bush	nells					0	Sheet: 1 of '
Excervation Dimensions: Cardino Dimensions: Contractor: Cardino Dimensions: Checked By: HS Checked By: CA Check					or				-			e Elevation:
Date Excautor Sampling & Techny Excautor Material Description yes ge ge <t< th=""><th></th><th></th><th></th><th></th><th><i>.</i></th><th></th><th></th><th></th><th></th><th></th><th></th><th>ctor: Cardno</th></t<>					<i>.</i>							ctor: Cardno
Excervite Sampling									Logged By: HS			
2 2 0 - - 0 30 - - 0 37 4 4 5 5 5 5 5 5 5 5 5 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 6 6 6 6 6	Excava	ation		Sampling &	Testing					n		
2 2 0 - - 0 30 - - 0 37 4 4 5 5 5 5 5 5 5 5 5 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 6 6 6 6 6	e					Ê		ы				
A Str. 5400 fm contexts Str. 5400 fm contexts Dite 5400 fm co	Method Resistance	Stability	Water		per 150 mm)	Depth (Graphic Log	Classificati	colour, secondary and minor components ROCK TYPE, grain size and type, colour, fabric & texture, strength, weathering,	Moisture Condition	Consistency Relative Density	
Method B 0.00 - 0.00 m Image: set of					1 1 1 1	-	علد علد ع لله عله عله عله عله ع لله عله عله عله عله ع			D		TOPSOIL
METHOD PENEWOK						-	علد علد ع		Clayey SAND: fine to medium grained, brown-orange, low plasticity clay, trace fine to			COLLUVIUM
METHOD PONCTASUM I BAT -						- 0.5 -		SC		м	MD	
METHOD PONCTASUM I BAT -				B 1 00 1 20 m		- - 1.0			Silty CLAY: medium plasticity, grey mottled red, with			RESIDUAL SOIL
MEHOO PENETRATION FELD TESTS SAMPLES NETHOO 250m TERMINATED AT 2.50 m VSR to H NETHOO 11111 11111 11111 11111 11111 225 250m VSR to H NETHOO 11111 11111 11111 11111 11111 11111 11111 11111 11111 11111 11111 11111 11111 11111 11111 11111 11111 11111 11111 11111 11111 11111 11111 11111 11111 11111 11111 11111 11111 11111 11111 11111 11111 11111 11111 11111 11111 11111 11111 11111 11111 11111 11111 11111 11111 11111 11111 11111 11111 11111 11111 11111 11111 11111 11111 11111 11111 11111 11111 11111 11111 11111 11111 11111 11111 11111 11111 11111 11111 11111 11111 <td>EX</td> <td>stable</td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td>St</td> <td></td>	EX	stable				-					St	
METHOD PENETRATION 2.5 m V 1000 monometry 1000 monometry V V Vectory V Vectory Vectory V Vectory Vectory V Vectory Vectory Vectory Vectory <t< td=""><td></td><td>05</td><td></td><td></td><td></td><td>- - 1.5</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>		05				- - 1.5						
METHOD PENETRATION 2.50m METHOD PENETRATION TERMINATED AT 2.50 m METHOD PENETRATION FIELD TESTS R Ripper H Herd (Refusal) Standard Penetration Test HP B METHOD EXecution bucket F PENETRATION FIELD TESTS SON< Sonic chilling AH WTER Standard Penetration Test HP B B Build disturbed sample DCP Solic CONSISTENCY VS VS			at 1.7			-		CI		M (>PL)		
METHOD PENETRATION FIELD TESTS SAMPLES SOIL CONSISTENCY METHOD VE Very Easy (No Resistance) FIELD TESTS B - Builk disturbed sample VS - Very Soft R Ripper Firm H H and auger F Firm B - Builk disturbed sample VS VS Very Soft PT Push tube VH Very Hard (Refusal) VF - Dry Matter PSP - Perth Sand Penetrometer D - Dry St. Stiff PAL/V Soft flight auger: V-Bit Water Level on Date MP Borehole Impression Test D - Dry M RELATIVE DENSITY WATER Water Level on Date IMP Borehole Impression Test M W Werd VE Very Loose			inflow e			- 2.0 - - -					VSt to H	
EX Excavator bucket VE Very Easy (No Resistance) SPT Standard Penetration Test B - Bulk disturbed sample VS - Very Soft R Ripper E Easy HP - Hand/Pocket Penetrometer D D Disturbed sample S - Soft PT Push tube F Firm DCP Dynamic Cone Penetrometer D - Disturbed sample S - Soft SON Sonic drilling VH Very Hard (Refusal) PSP Perth Sand Penetrometer U - Thin wall tube 'undisturbed' St - Stiff AH Air hammer WATER PBT Plate Bearing Test D - Dry Moist No Noist AD/V Soft flight auger: V-Bit Met Water Level on Date IMP Borehole Impression Test M - Moist VL Very Loose	V					-2.5-			TERMINATED AT 2.50 m			
EX Excavator bucket VE Very Easy (No Resistance) SPT Standard Penetration Test B - Bulk disturbed sample VS - Very Soft R Ripper E Easy HP - Hand/Pocket Penetrometer D D Disturbed sample S - Soft PT Push tube F Firm DC Dynamic Cone Penetrometer D - Disturbed sample S - Soft SON Sonic drilling VH Very Hard (Refusal) VH Very Hard (Refusal) PSP Perth Sand Penetrometer U - Thin wall tube 'undisturbed' St - Stiff PS Percussion sampler WATER PBT Plate Bearing Test D - Dry RELATIVE DENSITY AD/V Soft flight auger: V-Bit Water Level on Date IMP Borehole Impression Test M - Moist VL - Very Loose						-						
ADF - Solid light adger. - water inflow VS - Vane Shear; P=Peak, PL - Plastic limit MD - Medium Dense HFA Hollow flight auger - water outflow R=Resdual (uncorrected kPa) LL - Liquid limit D - Dense	EX ER R HA H PT P SON S AH A PS P AD/V S AD/V S AD/T S WB V	EX Excavator bucket R Ripper AH Hand auger PT Push tube SON Sonic drilling AH Air hammer PS Percussion sampler AD/V Solid flight auger AD/V Solid flight auger AD				efusal) _evel on nflow		S F F F	PT - Standard Penetration Test B - E IP - Hand/Pocket Penetrometer D - E IP - Dynamic Cone Penetrometer U - T ISP - Perth Sand Penetrometer U - T ISP - Perth Sand Penetrometer U - T IG - Moisture Content MOISTUR IBT - Plate Bearing Test D - E MP - Borehole Impression Test M - M ID - Photoionisation Detector W - V IS - Vane Shear; P=Peak, L - E	Bulk disturb Disturbed sa Environmen Thin wall tul RE Dry Moist Vet Plastic limit iquid limit	ample tal sampl be 'undis	le VS - Very Soft S - Soft turbed' St - Stiff VSt - Very Stiff H - Hard RELATIVE DENSITY VL - Very Loose L - Loose MD - Medium Dense D - Dense
RR Rock roller VD - Very Dense Refer to explanatory notes for details of abbreviations and basis of descriptions CARDNO (NSW/ACT) PTY LTD				for details of			0.4 5					vu - very Dense

ine	: I See	Bush	liffe, Wyee De ells Ridge Ro		ionit						••	ole No: TP034
ine vati				ad, Bush	nells			Job No: 82219014				Sheet: 1 of
vati	Type		ched plan					Angle from Horizontal: -90				e Elevation:
			onne Excavato	or				Excavation Method: 400m	nm tooth			
EXC			sions:					Longood Dyn. US				ctor: Cardno
a cati		ea: 24		Testing	1			Logged By: HS	orintian		Спеске	ed By: GA
avatio		-	Sampling &		-			Material Des				
Resistance	Stability	Water	Sample or Field Test	(blows per 150 mm)	Depth (m)	Graphic Log	Classification	SOIL TYPE, plasticity or particle character colour, secondary and minor componer ROCK TYPE, grain size and type, colou fabric & texture, strength, weathering defects and structure	nts ur,	Moisture Condition	Consistency Relative Density	STRUCTURE & Other Observations
				103 L	-	لله عله عله عله عله عله لله عله عله عله عله عله عله عله عله لله عله عله		Silty SAND: fine to medium grained, grey, lo plasticity silt, with rootlets	w	D		TOPSOIL
								0.30m Clayey SAND: fine to medium grained, brown-orange, low plasticity clay, trace fine coarse, sub-angular gravel	to			COLLUVIUM
					-		SC			М	MD	
	able				- 1.0			1.00m Silty CLAY: medium plasticity, grey mottled r lithorelics (siltstone)	red, with			RESIDUAL SOIL
	Sta			R	- 1.5							
		untered at 2.1m			- - 2.0 -		СІ			M (>PL)	VSt to H	
		inflow enco			- 2.5			2.50m TERMINATED AT 2.50 m				
					-							
Rip Hai Pu: Soi Air Pei Soi Soi Soi Hoi	per nd aug sh tub nic dril hamm ccussic ort spii id fligh id fligh llow flig	ler e ling er on samp al auge at auge at auge ot auge	t VE F H VH VH er : V-Bit r: TC-Bit er	Very Easy (N Easy Firm Hard Very Hard (R TER Water I shown water ir	efusal) ∟evel on nflow		S F M F	SPT - Standard Penetration Test B HP - Hand/Pocket Penetrometer D DCP - Dynamic Cone Penetrometer U DSP - Perth Sand Penetrometer U VC - Moisture Content M PBT - Plate Bearing Test D MP - Borehole Impression Test M VID - Photoionisation Detector W V/S - Vane Shear; P=Peak, PL	- Bulk - Distr S - Envi - Thin OISTURE - Dry - Mois - Wet L - Plas - Liqu	urbed sa ronment wall tub st st itic limit id limit	ample tal sample be 'undist	e S - Soft F - Firm
	HOD Exipation Solution Air Pussion Solution Hold War Ro	Part and auge of the second and auge of the second auge of the se		Image: Solution of the system Image: Solution of the system Image: Solution of the system Image: Solution of the system Image: Solution of the system Image: Solution of the system Image: Solution of the system Image: Solution of the system Image: Solution of the system Image: Solution of the system Image: Solution of the system Image: Solution of the system Image: Solution of the system Image: Solution of the system Image: Solution of the system Image: Solution of the system Image: Solution of the system Image: Solution of the system Image: Solution of the system Image: Solution of the system Image: Solution of the system Image: Solution of the system Image: Solution of the system Image: Solution of the system Image: Solution of the system Image: Solution of the system Image: Solution of the system Image: Solution of the system Image: Solution of the system Image: Solution of the system Image: Solution of the system Image: Solution of the system Image: Solution of the system Image: Solution of the system Image: Solution of the system Image: Solution of the system Image: Solution of the system Image: Solution of the system Image: Solution of the system Image: Solution of the system Image: So	■ 1 3 6 12 ■ ■	OD Exceeded of this is a constrained of this constrained of this is a constrained of this constraine	Image: Constraint of the second sec	B I 1 3 6 1 I	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 <td>0 0 0 0 0 0 0 Sky SAVD: fine to medium grained, grey, low pasticity sky, with rocotins 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td> <td>9 90 90 90 90 90 90 90 90 90 90 90 90 90</td> <td>Open Durckt Right anger Boot and ming Boot Boot Boot Boot Boot Boot Boot Boot</td>	0 0 0 0 0 0 0 Sky SAVD: fine to medium grained, grey, low pasticity sky, with rocotins 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	9 90 90 90 90 90 90 90 90 90 90 90 90 90	Open Durckt Right anger Boot and ming Boot Boot Boot Boot Boot Boot Boot Boot

		Cá	arc	lno°							TE	ST PIT LOG SHEET
Clien Proje		\ I	Nyee Rado	e Land Pty Ltd liffe, Wyee De	veloperr	nent					Η	ole No: TP035
Locat	tion	: 1	Busł	ells Ridge Ro					Job No: 82219014			Sheet: 1 of 1
				ched plan					Angle from Horizontal: -90°			e Elevation:
				onne Excavato	r				Excavation Method: 400mm too			ctor: Cardno
				24/8/18					Logged By: HS			ed By: GA
Exca	avatio	on		Sampling & T	esting				Material Description			•
Method	Resistance	Stability	Water	Sample or Field Test	(blows per 150 mm)		Graphic Log	Classification	SOIL TYPE, plasticity or particle characteristic, colour, secondary and minor components ROCK TYPE, grain size and type, colour, fabric & texture, strength, weathering, defects and structure	Moisture Condition	Consistency Relative Density	STRUCTURE & Other Observations
				D 0.10 - 0.20 m		-	لله عله عله عله عله عله لله عله عله عله عله عله عله عله عله عله عله عله		Silty SAND: fine to medium grained, grey, low plasticity silt, with rootlets	D		TOPSOIL
						- - 0.5		sc	0.25m Clayey SAND: fine to medium grained, brown-orange, low plasticity clay, trace fine to coarse, sub-angular gravel	м	L to MD	COLLUVIUM
		۵				- 			Sitty CLAY: medium plasticity, grey mottled red, with lithorelics (siltstone)		St	RESIDUAL SOIL
EX-		Stable				- 1.5		СІ		M (>PL)		
			inflow encountered at 1.7m			- 2.0			2.50m		VSt	
		_				-			TERMINATED AT 2.50 m Target depth			
METH EX R HA PT SON AH PS AD/V AD/T HFA WB RR	R Ripper HA Hand auger PT Push tube SON Sonic drilling AH Air hammer PS Percussion sampler AD/V Solid flight auger: V-Bit HFA Hollow flight auger WB Washbore drilling Water Level of water inflow water outflow							S F F M F	P Hand/Pocket Penetrometer D - CP Dynamic Cone Penetrometer U - SP Perth Sand Penetrometer U - CC Moisture Content D - BT Plate Bearing Test D - ID Photoionisation Detector W - VB Vane Shear; P=Peak, V -	ulk disturb isturbed sa nvironmen nin wall tul E ry oist	ample tal sampl be 'undist	e S - Soft F - Firm
Refer t	to expl	anatory	notes f	for details of lescriptions			CAR		NO (NSW/ACT) PTY LTD			

) C	arc	Ino °						TE	ST PIT LOG SHEET
	ent: ject	:	Nyee Rado	Land Pty Ltd liffe, Wyee Developer	nent					Η	ole No: TP101
Loc	atio	on:	Bush	ells Ridge Road, Bus	hells			Job No: 82219014			Sheet: 1 of 1
				ched plan				Angle from Horizontal: -90°			e Elevation:
				onne Excavator				Excavation Method: 400mm too			ctor: Cardno
				24/8/18				Logged By: HS			ed By: GA
E	xcava	ation		Sampling & Testing				Material Description	۱		
Method	Resistance	Stability	Water	Sample or Field Test	Depth (m)	Graphic Log	Classification	SOIL TYPE, plasticity or particle characteristic, colour, secondary and minor components ROCK TYPE, grain size and type, colour, fabric & texture, strength, weathering, defects and structure	Moisture Condition	Consistency Relative Density	STRUCTURE & Other Observations
				ES 0.10 m	-	لك علك علك علك علك ع لك علك علك علك علك ع لك علك علك		Sitty SAND: fine to medium grained, grey, low plasticity sit, with rootlets	м		TOPSOIL
EX		Stable	Not Encountered	ES 0.25 m ES 0.50 m	- - - 0.5		sc	0.15m Clayey SAND: fine to coarse grained, brown-orange, low to medium plasticity clay, trace fine to coarse, sub-angular gravel	м	MD	COLLUVIUM
.					-			0.60m TERMINATED AT 0.60 m Target depth			
					- 1.0						
					- 1.5 - - - - - - - - - - - - - - - - - -						
					- - - 2.5 - - -						- - - - - - - - - - -
EP RH PT SC AH SC AS AD RF RF	FA F PDN SA FA F SO/V SO/V SO/V SO/V SO/V SO/V SO/T S FA F B V fer to e	Excavatc Ripper Hand au Push tub Sonic dri Vir hamn Percussi Short sp Solid flig Solid flig Solid flig Solid flig Hollow flig Rock roll	ger e lling her on sam ral augo nt augo nt augo ght au e drillin er	pler er er. V-Bit ger ↓ Log /	No Resistar Refusal) Level on	Date	S F F II F	IP - Hand/Pocket Penetrometer D - ES - ES - ES - ES - ES - ES - T VSP - Perth Sand Penetrometer V - T V - T VG - Moisture Content D - D MOISTUR VBT - Plate Bearing Test D - D M VID - Photoionisation Detector W - W VG - Vane Shear; P=Peak, L - L	ulk disturb isturbed si nvironmen hin wall tu	ample ital sampl be 'undist	e S - Soft F - Firm

	\square	C	arc	no						TE	ST PIT LOG SHEET
Clie Pro	ent: ject:		Nye Rado	e Land Pty Ltd liffe, Wyee Develope	ment					Η	ole No: TP102
Loc	atio	n:	Busł	ells Ridge Road, Bus	hells			Job No: 82219014			Sheet: 1 of 1
				ched plan				Angle from Horizontal: -90° Excavation Method: 400mm too			e Elevation:
				onne Excavator				Excavation method: 400mm too			ctor: Cardno
				24/8/18				Logged By: HS			ed By: GA
E>	cavat	tion		Sampling & Testing				Material Description			
Method	Resistance	Stability	Water	Sample or Field Test	Depth (m)	Graphic Log	Classification	SOIL TYPE, plasticity or particle characteristic, colour, secondary and minor components ROCK TYPE, grain size and type, colour, fabric & texture, strength, weathering, defects and structure	Moisture Condition	Consistency Relative Density	STRUCTURE & Other Observations
				ES 0.10 m	-	لك علك علك علك علك ع لك علك علك علك علك ع لك علك علك		Silty SAND: fine to medium grained, grey, low plasticity silt, with rootlets	м		TOPSOIL -
EX		Stable	Not Encountered	ES 0.25 m ES 0.50 m	- - - 0.5		sc	0.15m Clayey SAND: fine to coarse grained, brown-orange, low to medium plasticity clay, trace fine to coarse, sub-angular gravel	м	L to MD	COLLUVIUM
*								0.60m TERMINATED AT 0.60 m Target depth			
ME EX R HAA P T S AD H F W R R R R t AD					- 1.0 - 1.0 						
ME EX PT SC AD H F R AD H F R R	R P N S S S V V S S V V S S V V S S V V S S V V S R V R N S R V S R	xcavato ipper and augush tub onic dri r hammercussie hort spi olid flig olid flig olid flig oliow fli 'ashbor ock roll	ger e lling ner on san ral aug nt aug ght au ght au e drilli er	pler er er. V-Bit ger ↓ Leasy F Firm H Hard VH Very Hard (WATER water shown water	No Resistar Refusal) Level on 1 inflow	Date	S F F F V	$\begin{array}{rcl} \mbox{IP} & - & \mbox{Hand}/Pocket Penetrometer} & D & - & D \\ \mbox{CP} & - & Dynamic Cone Penetrometer} & U & - & TT \\ \mbox{CP} & - & Perth Sand Penetrometer} & U & - & TT \\ \mbox{CP} & - & Moistruer Content} & & U & - & TT \\ \mbox{ID} & - & Moistruer Content} & & & MOISTURI \\ \mbox{BT} & - & Plate Bearing Test} & & D & - & DI \\ \mbox{ID} & - & Photoionisation Detector} & & W & - & W \\ \mbox{ID} & - & Photoionisation Detector} & & V & - & PL \\ \mbox{CP} & - & Paredular (VPA) & LL & - & Li \\ \mbox{PERCentral (VPA)} & & LL & - & Li \\ \end{tabular}$	ulk disturb sturbed sa nvironmen nin wall tu Y oist	ample tal sampl be 'undist	e S - Soft F - Firm
	ect:	F	Rådo	e Land Pty Ltd :liffe, Wyee Developen	nent					Η	ole No: TP10
---	--	-----------------------------------	---	---	---------------------------------	---	----------------------------	--	-----------------------	------------------------------------	--
.oc	atior	n: B	Busł	ells Ridge Road, Bust	nells			Job No: 82219014			Sheet: 1 of
				ched plan				Angle from Horizontal: -90°			e Elevation:
				onne Excavator				Excavation Method: 400mm toot			stam. Osudas
				nsions: 24/8/18				Logged By: HS			ctor: Cardno ed By: GA
	cavati		eu. z	Sampling & Testing	1			Material Description		CHECK	eu by. GA
	cavau			Sampling & resurg			_				
Method	Resistance	Stability	Water	Sample or Field Test	Depth (m)	Graphic Log	Classification	SOIL TYPE, plasticity or particle characteristic, colour, secondary and minor components ROCK TYPE, grain size and type, colour, fabric & texture, strength, weathering, defects and structure	Moisture Condition	Consistency Relative Density	STRUCTURE & Other Observations
			ed	ES 0.10 m	-	له عله عله عله عله عله له عله عله عله عله عله له عله عله عله عله ع		Sitty SAND: fine to medium grained, grey, low plasticity sitt, with rootlets	м		TOPSOIL
EX -		Stable	Not Encountered	ES 0.25 m	- - - 0.5		sc	0.20m Clayey SAND: fine to coarse grained, brown-orange, low to medium plasticity clay, trace fine to coarse, sub-angular gravel	м	L to MD	COLLUVIUM
				ES 0.50 m	-0.5						
V.					-	<u> </u>		0.60m TERMINATED AT 0.60 m Target depth			
					- 1.0 -						
					- - 1.5 -						
					- 2.0 -						
					- - -2.5						
					-						
EX R HA PT SO AD AD/ AD/ HF/ WB	Rip Ha Pu Air Pe Sh V Sol T Sol A Ho Wa	lid fligh llow flig ashbore	ger e ling er on sam ral auge nt auge ght au ght au	pler er er: v-Bit ger v- v- v- v- v- v- v- v- v- v	^{tefusal)} Level on		S H D P N I	P Hand/Pocket Penetrometer D Display CP Dynamic Cone Penetrometer U Th SP Perth Sand Penetrometer U Th CF Moisture Content MOISTURE BT Plate Bearing Test D Dr ID Photoionisation Detector M Mc V Vane Shear; P=Peak, PL Plate	/ iist	ample tal sampl be 'undist	e S - Soft urbed' St - Stiff VSt - Stiff H - Hard RELATIVE DENSITY VL - Very Loose L - Loose MD - Medium Den: D - Dense
WB RR	Wa Ro	ashbore ck rolle	e drillir er	ior details of		045		B=Boodual (upporrected kBa) LL - Liq		ntent	

	\square	C	arc	lno°						TE	ST PIT LOG SHEET
Clie	ent: ject:			Land Pty Ltd liffe, Wyee Develope	ment					Η	ole No: TP104
Loc	atio	n:	Bush	ells Ridge Road, Bus	shells			Job No: 82219014			Sheet: 1 of 1
				ched plan				Angle from Horizontal: -90° Excavation Method: 400mm too			e Elevation:
				onne Excavator				Excavation Method: 400mm too			ctor: Cardno
				4/8/18				Logged By: HS			ed By: GA
E>	cavat	tion		Sampling & Testing				Material Description			
Method	Resistance	Stability	Water	Sample or Field Test	Depth (m)	Graphic Log	Classification	SOIL TYPE, plasticity or particle characteristic, colour, secondary and minor components ROCK TYPE, grain size and type, colour, fabric & texture, strength, weathering, defects and structure	Moisture Condition	Consistency Relative Density	STRUCTURE & Other Observations
			p	ES 0.10 m	-	لى على على على على على لى على على على على على لى على على		Sitty SAND: fine to medium grained, grey-brown, low plasticity sitt, with fine to medium, sub angular gravel, trace rootlets	D		TOPSOIL
EX		Stable	Not Encountered	ES 0.25 m ES 0.50 m	- - 0.5		CL- CI	0.20m Silty CLAY: low to medium plasticity, orange-brown mottled red	M (>PL)	F to St	RESIDUAL SOIL
								0.60m TERMINATED AT 0.60 m Target depth			
ME EX HAA PSC AD HFW RR R					- 1.0 - 1.0 1.5 2.0 						
ME EX HA PT SC AH PS AD AD HF WE RR	HA Hand auger F F F PT Push tube F F F F PT Push tube F F F F SON Sonic drilling H Hand DCP Dynamic Cone Penetrometer AH Air nammer PSP Perth Sand Penetrometer WO MolSTURE PS Percussion sampler MATER PBT Plate Bearing Test D D AD/T Solid flight auger Water Level on Date shown IMP Borehole Impression Test D D Dry RELATIVE DENSITY HF A Hollow flight auger Water inflow VS Vane Shear, P=Peak, PL Plastic limit L - Loose WB Washbore drilling water outflow R R R Resedual (uncorrected kPa)										
Ref	er to e	planatory	/ notes t	or details of escriptions		CAF		NO (NSW/ACT) PTY LTD			

		C	arc	lno [°]						ΤE	ST PIT LOG SHEET
Pro	ent: ject	:	Rádo	e Land Pty Ltd liffe, Wyee Developer	ment					Η	ole No: TP105
	atio			ells Ridge Road, Bus ched plan	nells			Job No: 82219014		D	Sheet: 1 of 1
				onne Excavator				Angle from Horizontal: -90° Excavation Method: 400mm too			e Elevation:
				isions:				Excavation method. 400mm too			ctor: Cardno
				24/8/18				Logged By: HS			ed By: GA
E	xcava	tion		Sampling & Testing				Material Description			
		1	1		Ē		c				
Method	Resistance	Stability	Water	Sample or Field Test	Depth (m)	Graphic Log	Classification	SOIL TYPE, plasticity or particle characteristic, colour, secondary and minor components ROCK TYPE, grain size and type, colour, fabric & texture, strength, weathering, defects and structure	Moisture Condition	Consistency Relative Density	STRUCTURE & Other Observations
			ed	ES 0.10 m	-	لد علد علد علد علد ع لد علد علد علد علد ع لد علد علد علد علد ع	-	Sitty SAND: fine to medium grained, grey-brown, low plasticity silt, with rootlets	D		TOPSOIL .
- EX		Stable	Not Encountered	ES 0.25 m	-		sc	0.20m Clayey SAND: fine to medium grained, grey-brown, low plasticity clay	м	L to MD	COLLUVIUM
				ES 0.50 m			СІ	0.40m Silty CLAY: medium plasticity, orange-brown mottled red, trace lithorelics (siltstone)	M (>PL)	St	RESIDUAL SOIL
*								0.60m TERMINATED AT 0.60 m Target depth			
					-						
					- 1.0						-
					-						
					-						-
					- 1.5 -						-
					-						-
					-2.0						-
					-						
					-2.5						-
ME EX R HAA PT SC AA AD HF WW RF Retabl					-						
ME EX R		D xcavato	r buck			nce)	s		Ik disturb		le VS - Very Soft S - Soft
HA PT SC AH PS AS	N S N S N S S S	land au ush tub onic dri ir hamm ercussi hort spi	e Iling Ier on sam ral aug	er Water	Level on	Date	F N F	CP - Dynamic Cone Penetrometer ES - Er	ivironmen iin wall tul E y	tal sampl	e F - Firm turbed' St - Stiff VSt - Very Stiff H - Hard RELATIVE DENSITY
AD AD HF WE RF	D/T S ≅A H B W		nt auge ght au e drillir		inflow		F	ID - Photoionisation Detector W - W S - Vane Shear; P=Peak, PL - Pl B=Boodual (uncorrected kBa) LL - Liu		ntent	VL - Very Loose L - Loose MD - Medium Dense D - Dense VD - Very Dense
Ret abb	fer to e previation	xplanator ons and b	/ notes f asis of c	or details of escriptions		CAF	RDI	NO (NSW/ACT) PTY LTD			

		C	arc	lno [°]						ΤE	ST PIT LOG SHEET
Pro	ent: ject	:	Rádo	e Land Pty Ltd liffe, Wyee Developer	nent					Η	ole No: TP106
	atio			ells Ridge Road, Bus ched plan	nelis			Job No: 82219014 Angle from Horizontal: -90°			Sheet: 1 of 1
				onne Excavator				Excavation Method: 400mm too			e Elevation:
				isions:							ctor: Cardno
-				24/8/18				Logged By: HS			ed By: GA
E	xcava	tion		Sampling & Testing				Material Description			•
			1		Ê		E				
Method	Resistance	Stability	Water	Sample or Field Test	Depth (m)	Graphic Log	Classification	SOIL TYPE, plasticity or particle characteristic, colour, secondary and minor components ROCK TYPE, grain size and type, colour, fabric & texture, strength, weathering, defects and structure	Moisture Condition	Consistency Relative Density	STRUCTURE & Other Observations
			pə.	ES 0.10 m	-	لك علك علك علك علك ع لك علك علك علك علك علك لك علك علك علك علك ع	-	Silty SAND: fine to medium grained, grey-brown, low plasticity silt, with rootlets	м		TOPSOIL -
- EX		Stable	Not Encountered	ES 0.25 m	-		sc	0.20m Clayey SAND: fine to medium grained, grey-brown, low plasticity clay	м	L to MD	COLLUVIUM
				ES 0.50 m	- 0.5		СІ	0.40m Silty CLAY: medium plasticity, orange-brown mottled red, trace lithorelics (siltstone)	M (>PL)	St	RESIDUAL SOIL
								0.60m TERMINATED AT 0.60 m Target depth			
					-						-
					- 1.0						-
					-						-
											-
					- 1.5 -						-
MI E2 R H4 PT SC A9 AL HF W RF					-						-
					- 2.0						-
					-						
					-2.5						-
i					-						-
ME E>		xcavato	r buck			nce)	s		Ik disturb		SOIL CONSISTENCY
R HA PT SC AF AS AS	N S N S N S S S	tipper land aug ush tub onic dri ir hamm ercussio hort spi olid flig	e Iling Ier on sam ral aug	er Water	Level on	Date	F F F	CP - Dynamic Cone Penetrometer ES - EI SP - Perth Sand Penetrometer U - Tt IC - Moisture Content MOISTURI BT - Plate Bearing Test D - Di IP - Borehole Impression Test M - M	y pist	tal sampl	
AL AE HF WI RF	D/T S ≅A H B W		nt auge ght au e drillir	er: TC-Bit ger water	inflow			ID - Photoionisation Detector W - W S - Vane Shear; P=Peak, PL - Pl LL - Liu		ntent	MD - Very Loose L - Loose MD - Medium Dense D - Dense VD - Very Dense
Re abl	fer to e previation	xplanator ons and b	/ notes f asis of c	or details of escriptions		CAF	RDI	NO (NSW/ACT) PTY LTD			

Clie Proj	nt: ject:	1	Rádo	e Land Pty Ltd cliffe, Wyee Developer	nent					Η	ole No: TP10
.oc	atior	n: I	Busł	ells Ridge Road, Bus	hells			Job No: 82219014			Sheet: 1 of
				ched plan				Angle from Horizontal: -90°			e Elevation:
lac	hine	Тур	e: 5 t	onne Excavator				Excavation Method: 400mm toot	hed bu	icket	
				nsions:							ctor: Cardno
Date	e Exc	avat	ed: 2	24/8/18				Logged By: HS		Check	ed By: GA
Ex	cavati	on		Sampling & Testing				Material Description			
Method	Resistance	Stability	Water	Sample or Field Test	Depth (m)	Graphic Log	Classification	SOIL TYPE, plasticity or particle characteristic, colour, secondary and minor components ROCK TYPE, grain size and type, colour, fabric & texture, strength, weathering, defects and structure	Moisture Condition	Consistency Relative Density	STRUCTURE & Other Observations
			ber	ES 0.10 m	-	لد علد علد علد علد ع لد علد علد علد علد علد لد علد علد علد علد ع		Silty SAND: fine to medium grained, grey-brown, low plasticity silt, with rootlets	м		TOPSOIL
		Ð	Not Encountered	ES 0.25 m	-			0.20m Clayey SAND: fine to medium grained, grey-brown, low plasticity clay	-		COLLUVIUM
- EX		Stable	Not En	ES 0.25 M	F			low pasificity day			
				FC 0 50 m			sc		м	L to MD	
v				ES 0.50 m	_			0.60m			
					-			TERMINATED AT 0.60 m Target depth			
					-						
					- 1.0						
					-						
					-						
					F						
					- 1.5 -						
					-						
					-						
					- 2.0						
					-						
					-						
					-2.5						
					-						
					-						
ME EX	THOD Ex	cavato	r bucke	PENETRATION et VE Very Easy (1				ELD TESTS SAMPLES PT - Standard Penetration Test B - Bu	 Ik disturh	ed sampl	SOIL CONSISTENCY
R HA PT SO AH	Rip Ha Pu N So Air	oper nd aug sh tub nic dril hamm	ger e ling ier	E Easy F Firm H Hard VH Very Hard (F			HI Di Pi M	D - Hand/Pocket Penetrometer D - Dis CP Dynamic Cone Penetrometer ES - En SP Perth Sand Penetrometer U - Th C - Moisture Content MOISTURE	sturbed s vironmen in wall tu		e S - Soft F - Firm
PS AS AD/ AD/ HF/	/T Solid flight auger: TC-Bit A Hollow flight auger water inflow					Date		S - Vane Shear; P=Peak, PL - Pla	ist		RELATIVE DENSITY VL - Very Loose L - Loose MD - Medium Den Doose
WB RR		ashbor ck rolle		water	JULIIOW			R=Resdual (uncorrected kPa)	isture co	ntent	D - Dense VD - Very Dense

Card	dno°						TE	ST PIT LOG SHEET
Rado	cliffe, Wyee Developen	nent			lab No. 82240044		Η	ole No: TP108
		liens					Surface	Sheet: 1 of 1 e Elevation:
								ctor: Cardno
					Logged By: HS			ed By: GA
	Sampling & Testing				Material Description			
		Ê		c	·			
Stability Water	Sample or Field Test	Depth (r	Graphic Log	Classificatio	SOIL TYPE, plasticity or particle characteristic, colour, secondary and minor components ROCK TYPE, grain size and type, colour, fabric & texture, strength, weathering, defects and structure	Moisture Condition	Consistency Relative Density	STRUCTURE & Other Observations
red	ES 0.10 m	-	لك علك علك علك علك علك لك علك علك علك علك علك علك علك علك ال علك علك ع		Silty SAND: fine to medium grained, grey-brown, low plasticity silt, with rootlets	D to M		TOPSOIL
Stable Not Encounte	ES 0.25 m	-		sc	Clayey SAND: fine to medium grained, grey-brown, low plasticity clay	м	L to MD	COLLUVIUM
	ES 0.50 m	- 0.5		СІ	Silty CLAY: medium plasticity, orange-brown mottled red and grey, trace lithorelics (siltstone)	M (>PL)	St	RESIDUAL SOIL
		-	илл		0.60m TERMINATED AT 0.60 m			
		- - - - - - - - - - - - - - - - - - -						
er auger tube c drilling ammer ussion san spiral aug flight aug flight aug w flight aug	npler ger er: V-Bit iger	Refusal) Level on nflow		S H D P M P IN P	PT - Standard Penetration Test B - Bu P - Hand/Pocket Penetrometer D - Dis CP - Dynamic Cone Penetrometer U - Thi SP - Perth Sand Penetrometer U - Thi C - Moisture Content MOISTURE BT - Plate Bearing Test D - Dry IP - Borehole Impression Test M - Moi ID - Photoionisation Detector W - We S - Vane Shear; P=Peak, PL - Pla	turbed sa vironment n wall tub ist ist stic limit uid limit	imple al sampl be 'undist	e S - Soft F - Firm
	Autor buck rator	Wyee Land Pty Ltd Radcliffe, Wyee Developen Bushells Ridge Road, Busing isee attached plan ype: 5 tonne Excavator important is in the second of the sec	Wyee Land Pty Ltd Radcliffe, Wyee Developement Bushells Ridge Road, Bushells ise attached plan ype: 5 tonne Excavator n Dimensions: vated: 24/8/18 Image: Sample or Field Test (ii) age ES 0.10 m - big Sample or Field Test - age ES 0.25 m - ES 0.50 m - - age ES 0.50 m - age - - bind - - age - - age - - bind - - age - - </td <td>Wyee Land Pty Ltd Radcliffe, Wyee Developement Bushells Ridge Road, Bushells ise attached plan ype: 5 tonne Excavator Dimensions: vated: 24/8/18 Sampling & Testing (E) ing Sample or Field Test (E) age ES 0.10 m - ES 0.25 m - - -</td> <td>Wyee Land Pty Ltd Radcliffe, Wyee Developement Bushells Ridge Road, Bushells iee attached plan ype: 5 tonne Excavator n Dimensions: rated: 24/8/18 iege ieger ieger</td> <td>Wyse Land Pty Ltd Radciffe, Wyse Development Bushells Rtdg Road, Bushells Job No: 8221901 ise attached plan pye: 5 tone Excavation Method: 400mm tool 1Dimensions: rated: 24/8/18 Angle from Horizontal: -90° Excavation Method: 400mm tool Excavation Method: 400mm tool Received and Statistics rated: 24/8/18 isg Sampling & Testing isg isg Isg isg Sampling & Testing isg isg Material Description Rock TPC; gin nice and Npo, obur, family and the case isg isg Statistics isg isg isg Sampling & Testing isg isg isg Soli, TPTE; plasticity or particle characteristic. Rock TPC; gin nice and Npo, obur, family isg isg isg isg isg Statistics Rock TPC; gin nice and Npo, obur, family isg isg isg isg isg Soli 0 m isg isg Statistics Rock TPC; gin nice and Npo, obur, family isg isg isg Statistics Rock TPC; gin nice and Npo, obur, family isg isg isg isg isg So 10 m isg isg Statistics Rock TPC; gin nice and Npo, obur, family isg isg isg Statistics Rock TPC; gin nice and Npo, obur, family isg isg isg isg So 0 m -0.5 isg Statistics Rock TPC; gin nice and Npo, obur, family isg isg Statistics Rock TPC; gin nice and Npo, obur, family isg isg isg So 0 m -0.5 isg Statistics Rock TPC; gin nice and Npo, obur, family isg isg Statistics Rock TPC; gin nice and Npo, obur, family isg isg Statistics Rock TPC; gin nice and Npo, obur, family isg isg Statistics Rock TPC;</td> <td>Wyce Land Pty Ltd Radcliffe, Wyce Development Bushalis Ridge Road, Bushalis Job No: 82219014 Bushalis Ridge Road, Bushalis Job No: 82219014 Point Status Angle from Horizontal: -90° Point Status Excavator Excavator Excavator Dimensions: Comparison atad: 24/8/15 Logged By: HS Sampling A Testing Pisud Test Image Status Big Bob Chick TryE: planticity or partice characteristic. Float C transmitter and type. Colour, fator & transmitter and type. Co</td> <td>Wyse Land Pty Lid Backinffe, Wyse Development Bushols Ridge Road, Eustehels Job Nr. 82219014 de attached plan Angle from Horizontal: -90° Surface pres: 5 tom Excavator Excavator Method: 400m toched bucket Contra Table Ridge Road, Eustehels Contra Contra Contra Ridge Road, Eustehel Dimensions: Contra Contra Contra Ridge Road, Eustehel Dimensions: Contra Contra Contra Ridge Road, Eustehel Dimensions: Contra Contra Contra Contra Ridge Road, Eustehel Dimensions: Contra Contra Contra Contra Ridge Road, Eustehel Dimensions: Contra Contra Contra Contra Ridge Road, Eustehel Dimensions: Contra Contra Contra Ridge Road, Eustehel Dimensions: Contra Contra Contra Ridge Road, Eustehel Dimensions: Contra Contra Ridge Road, Eustehel Dimensions: Contra Contra Ridge Road, Eustehel Dimensions: Contra Contra Ridge Road, Eustehel Dimensions: Dimensions: 000 Sample or Field Test 000 Big Big Big Big Big Big Big Big Big Big</td>	Wyee Land Pty Ltd Radcliffe, Wyee Developement Bushells Ridge Road, Bushells ise attached plan ype: 5 tonne Excavator Dimensions: vated: 24/8/18 Sampling & Testing (E) ing Sample or Field Test (E) age ES 0.10 m - ES 0.25 m - - -	Wyee Land Pty Ltd Radcliffe, Wyee Developement Bushells Ridge Road, Bushells iee attached plan ype: 5 tonne Excavator n Dimensions: rated: 24/8/18 iege ieger ieger	Wyse Land Pty Ltd Radciffe, Wyse Development Bushells Rtdg Road, Bushells Job No: 8221901 ise attached plan pye: 5 tone Excavation Method: 400mm tool 1Dimensions: rated: 24/8/18 Angle from Horizontal: -90° Excavation Method: 400mm tool Excavation Method: 400mm tool Received and Statistics rated: 24/8/18 isg Sampling & Testing isg isg Isg isg Sampling & Testing isg isg Material Description Rock TPC; gin nice and Npo, obur, family and the case isg isg Statistics isg isg isg Sampling & Testing isg isg isg Soli, TPTE; plasticity or particle characteristic. Rock TPC; gin nice and Npo, obur, family isg isg isg isg isg Statistics Rock TPC; gin nice and Npo, obur, family isg isg isg isg isg Soli 0 m isg isg Statistics Rock TPC; gin nice and Npo, obur, family isg isg isg Statistics Rock TPC; gin nice and Npo, obur, family isg isg isg isg isg So 10 m isg isg Statistics Rock TPC; gin nice and Npo, obur, family isg isg isg Statistics Rock TPC; gin nice and Npo, obur, family isg isg isg isg So 0 m -0.5 isg Statistics Rock TPC; gin nice and Npo, obur, family isg isg Statistics Rock TPC; gin nice and Npo, obur, family isg isg isg So 0 m -0.5 isg Statistics Rock TPC; gin nice and Npo, obur, family isg isg Statistics Rock TPC; gin nice and Npo, obur, family isg isg Statistics Rock TPC; gin nice and Npo, obur, family isg isg Statistics Rock TPC;	Wyce Land Pty Ltd Radcliffe, Wyce Development Bushalis Ridge Road, Bushalis Job No: 82219014 Bushalis Ridge Road, Bushalis Job No: 82219014 Point Status Angle from Horizontal: -90° Point Status Excavator Excavator Excavator Dimensions: Comparison atad: 24/8/15 Logged By: HS Sampling A Testing Pisud Test Image Status Big Bob Chick TryE: planticity or partice characteristic. Float C transmitter and type. Colour, fator & transmitter and type. Co	Wyse Land Pty Lid Backinffe, Wyse Development Bushols Ridge Road, Eustehels Job Nr. 82219014 de attached plan Angle from Horizontal: -90° Surface pres: 5 tom Excavator Excavator Method: 400m toched bucket Contra Table Ridge Road, Eustehels Contra Contra Contra Ridge Road, Eustehel Dimensions: Contra Contra Contra Ridge Road, Eustehel Dimensions: Contra Contra Contra Ridge Road, Eustehel Dimensions: Contra Contra Contra Contra Ridge Road, Eustehel Dimensions: Contra Contra Contra Contra Ridge Road, Eustehel Dimensions: Contra Contra Contra Contra Ridge Road, Eustehel Dimensions: Contra Contra Contra Ridge Road, Eustehel Dimensions: Contra Contra Contra Ridge Road, Eustehel Dimensions: Contra Contra Ridge Road, Eustehel Dimensions: Contra Contra Ridge Road, Eustehel Dimensions: Contra Contra Ridge Road, Eustehel Dimensions: Dimensions: 000 Sample or Field Test 000 Big Big Big Big Big Big Big Big Big Big

	-) C	arc	Ino °						TE	ST PIT LOG SHEET
Pro	ent: oject	:	Rádo	e Land Pty Ltd liffe, Wyee Developer	nent					Η	ole No: TP109
	catio	on:	Bush	ells Ridge Road, Bus	hells			Job No: 82219014			Sheet: 1 of 1
				ched plan onne Excavator				Angle from Horizontal: -90° Excavation Method: 400mm too			e Elevation:
				isions:				Excavation Method: 400mm too			ctor: Cardno
				24/8/18				Logged By: HS			ed By: GA
E	xcava	ation		Sampling & Testing				Material Description			•
Method	Resistance	Stability	Water	Sample or Field Test	Depth (m)	Graphic Log	Classification	SOIL TYPE, plasticity or particle characteristic, colour, secondary and minor components ROCK TYPE, grain size and type, colour, fabric & texture, strength, weathering, defects and structure	Moisture Condition	Consistency Relative Density	STRUCTURE & Other Observations
	~					له عله عله عله عله ع له عله عله عله عله عله	ö	Sity SAND: fine to medium grained, grey-brown, low plasticity sitt, with rootlets		0	TOPSOIL
		e	Not Encountered	ES 0.10 m ES 0.25 m	-			0.25m	м		- COLLUVIUM
EX		Stable	Not En	ES 0.50 m			sc	Clayey SAND: fine to medium grained, brown-orange, low plasticity clay	м	L to MD	
				E3 0.50 m				0.60m			
					- - - - - - - - - - - - - - - - - - -			TERMINATED AT 0.60 m Target depth			
E> R H/ PT SC AF AS AE	F F DN S H A S S S D/V S D/V S D/V S F A H B V	Excavato Ripper Hand aug Push tub Sonic dri Nir hamm Percussio Short spi Solid fligi	ger e lling her on sam ral aug nt aug ght au ght au e drillin	pler er er. V-Bit ger	No Resistar Refusal) Level on		S F F F	P Hand/Pocket Penetrometer D D CP Dynamic Cone Penetrometer ES Er SP Perth Sand Penetrometer U T CF Moisture Content MOISTURE BT Plate Bearing Test D D ID Borehole Impression Test M M ID Photoionisation Detector W W Vane Shear; P=Peak, PL PL	sturbed sa ovironmen in wall tu s y pist	tal sampl	e S - Soft F - Firm
Re abl	fer to e	explanator	/ notes t	or details of escriptions		CAR		NO (NSW/ACT) PTY LTD			

		C	arc	lno°						TE	ST PIT LOG SHEET
	ent: ject: atio	:	Rado	e Land Pty Ltd liffe, Wyee Developen nells Ridge Road, Bus	nent hells			Job No: 82219014		Η	ole No: TP110 Sheet: 1 of 1
		1. 1. Soc	atta	ched plan				Angle from Horizontal: -90°		Surfac	e Elevation:
				onne Excavator				Excavation Method: 400mm too			
				nsions:							ctor: Cardno
Date	e Ex	cavat	ed: 2	24/8/18				Logged By: HS		Checke	ed By: GA
E×	cava	tion		Sampling & Testing				Material Description			
Method	Resistance	Stability	Water	Sample or Field Test	Depth (m)	Graphic Log	Classification	SOIL TYPE, plasticity or particle characteristic, colour, secondary and minor components ROCK TYPE, grain size and type, colour, fabric & texture, strength, weathering, defects and structure	Moisture Condition	Consistency Relative Density	STRUCTURE & Other Observations
				ES 0.10 m	-	للد علد علد علد علد ع للد علد علد علد علد علد علد علد علد علد علد علد		Silty SAND: fine to medium grained, grey-brown, low plasticity silt, with rootlets	м		TOPSOIL -
EX		Stable	Not Encountered	ES 0.25 m ES 0.50 m	- - - 0.5		sc	0.20m Clayey SAND: fine to medium grained, brown-orange, low plasticity clay	M to W	L to MD	COLLUVIUM
					-		СІ	0.60m Silty CLAY: medium plasticity, orange-brown mottled red, trace lithorelics (siltstone) 0.80m	M (>PL)	F to St	RESIDUAL SOIL
					- 1.0 - 1.0 			TERMINATED AT 0.80 m Target depth			
TOTOLOGICAL Control of the second procession of the second proce								IP - Hand/Pocket Penetrometer DCP - Dynamic Cone Penetrometer PSP - Perth Sand Penetrometer MC - Moisture Content BT - Plate Bearing Test MP - Borehole Impression Test MD - Photoionisation Detector VS - Vane Shear, P=Peak,	y bist	ample tal sampl be 'undist	e S - Soft F - Firm
Ref abb	er to ex previatio	xplanator	/ notes t asis of c	for details of lescriptions		CAF	, D	NO (NSW/ACT) PTY LTD			1

	-		arc	Ino °						TE	ST PIT LOG SHEET
	ject	:	Rado	e Land Pty Ltd cliffe, Wyee Developer	nent					Η	ole No: TP201
	atio	on:	Busi	nells Ridge Road, Bus Iched plan	nells			Job No: 82219014			Sheet: 1 of 1
				cned plan				Angle from Horizontal: -90° Excavation Method: 400mm too			e Elevation:
				nsions:							ctor: Cardno
				24/8/18				Logged By: HS			ed By: GA
	kcava			Sampling & Testing				Material Description			j :
					-		-				
Method	Resistance	Stability	Water	Sample or Field Test	Depth (m)	Graphic Log	Classification	SOIL TYPE, plasticity or particle characteristic, colour, secondary and minor components ROCK TYPE, grain size and type, colour, fabric & texture, strength, weathering, defects and structure	Moisture Condition	Consistency Relative Density	STRUCTURE & Other Observations
			pe	ES 0.10 m	-	لد علد علد علد علد ع لد علد علد علد علد ع لد علد علد علد علد ع	-	Sitty SAND: fine to medium grained, grey-brown, low plasticity silt, with rootlets	D		TOPSOIL 0.00 m: Eastern side of 'quarried area'
– EX –		Stable	Not Encountered	ES 0.25 m	-			0.20m Silty CLAY: medium plasticity, orange-brown			RESIDUAL SOIL
				ES 0.50 m	0.5		СІ		M (>PL)	St	
					+	XXX/	1	0.60m TERMINATED AT 0.60 m			
					- - - - - - - - - - - - - - - - - - -			Target depth			
ME EX RATIONAL PROVINCIAL PROVINC	R H PON S I A S P S V/V S S V/T S A H B V	Excavato Ripper land au Push tub conic dri ir hamn Percussi chort spi colid flig	ger lling her on san ral aug ht aug ght aug ght au	ppler er er: V-Bit ger triteri	No Resistar Refusal) Level on I		S F F F	IP - Hand/Pocket Penetrometer D - Dit ICP - Dynamic Cone Penetrometer U - Th SP - Perth Sand Penetrometer U - Th IC - Moisture Content MOISTURE BT - Plate Bearing Test D - Dr ID - Photoionisation Detector W - W S - Vane Shear; P=Peak, LL - LL	y bist	ample tal sampl be 'undist	e S - Soft F - Firm
Ref abb	fer to e previatio	xplanator	y notes asis of o	for details of lescriptions		CAF	RDI	NO (NSW/ACT) PTY LTD			

		C	arc	lno [°]						TE	ST PIT LOG SHEET
	nt: ect: atio	1	Rádo	e Land Pty Ltd liffe, Wyee Develope nells Ridge Road, Bus	ment			Job No. 82240044		H	ole No: TP202
				ched plan	liens			Job No: 82219014 Angle from Horizontal: -90°		Surfac	Sheet: 1 of e Elevation:
				onne Excavator				Excavation Method: 400mm tool			
				nsions:							ctor: Cardno
				24/8/18				Logged By: HS			ed By: GA
Ex	cavat	ion		Sampling & Testing				Material Description			
					- F		ç				
Method	Resistance	Stability	Water	Sample or Field Test	Depth (m)	Graphic Log	Classification	SOIL TYPE, plasticity or particle characteristic, colour, secondary and minor components ROCK TYPE, grain size and type, colour, fabric & texture, strength, weathering, defects and structure	Moisture Condition	Consistency Relative Density	STRUCTURE & Other Observations
1				ES 0.10 m	-	لله علم علم علم علم علم علم علم علم علم علم علم علم علم علم علم علم ع		Sitty SAND: fine to medium grained, grey-brown, low plasticity sitt, with rootlets	D		TOPSOIL 0.00 m: Southern side of 'quarried area'
			Not Encountered	ES 0.25 m	-			0.20m Silty CLAY: medium plasticity, pale brown mottled orange			RESIDUAL SOIL
- EX-		Stable	Not Enco	ES 0.50 m	0.5		сі		M (>PL)	St to VSt	
				ES 0.50 m	-			0.70m			
					[SILTSTONE, pale grey, thinly laminated, extremely			WEATHERED ROCK
1					+			TERMINATED AT 0.80 m			
					F			Target depth			
					- 1.0						
					- 1.0						
					F						
					F						
					-						
					- 1.5						
					Ļ						
					F						
					ŀ						
					F						
					-2.0						
					F						
					F						
					Γ						
					F						
					-2.5						
					2.5						
					F						
					ŀ						
					ſ						
					ŀ						
			r buel:	PENETRATION				IELD TESTS SAMPLES PT - Standard Penetration Test B - Bu	lk diot	od co	SOIL CONSISTENCY
EX R	Ri	cavato		E Easy	No Resistar	ice)	F	P - Hand/Pocket Penetrometer D - Dis	Ik disturb sturbed sa	ample	S - Soft
HA PT	Ρι	and aug ush tub	e	F Firm H Hard				U - Th	vironmen in wall tul		turbed' St - Stiff
SOI AH	Ai	onic dril r hamm	ner	VH Very Hard (Refusal)			SP - Perth Sand Penetrometer IC - Moisture Content MOISTURE			VSt - Very Stiff H - Hard
PS AS	Sh	ercussio nort spi	ral aug	er Vater	· Level on	Date		BT - Plate Bearing Test D - Dr IP - Borehole Impression Test M - Mr	y viet		RELATIVE DENSITY
AD/ AD/	V So	olid flig	nt aug	er: V-Bit show	۱	2010	F	ID - Photoionisation Detector W - W	et		VL - Very Loose L - Loose
HF/ WB	A Ho	ollow fli ashbor	ght au	ger water			V	B=Beadual (uncorrected kBa) LL - Lic	astic limit Juid limit		MD - Medium Dense
RR		ock roll			2001011			R=Resoluti (uncorrected kPa) w - Mo	isture co	ntent	VD - Very Dense
Refe	er to ex	planator	/ notes	or details of			יח				1
abbr	eviation	planatory ns and b	asis of o	or details of lescriptions		CAR	νDI	NO (NSW/ACT) PTY LTD			

		\supset	Cá	arc	ino °										TE	ST PIT	LOG SHEET
F		ect:	I	Rado	e Land Pt liffe, Wy	ee Developer	nent								Η	ole N	o: TP203
	.oc ≩ido	atior	1: I	Busr	ched pla	ge Road, Bus	nells				Job No: 8		. 00°		fo o	e Elevatio	Sheet: 1 of 1
					onne Exc						-	n Horizontal	1: -90 100mm tootl			e Elevatio	DN:
					isions:						Excavatio	in method				ctor: Car	dno
					24/8/18						Logged B	/: HS				ed By: GA	
	Ex	cavati	on		Sampl	ling & Testing							al Description				
		d)					Ê		E								
	Method	Resistance	Stability	Water		ample or ield Test	Depth (m)	Graphic Log	Classification	S	OIL TYPE, plastic colour, secondar ROCK TYPE, gra fabric & texture defects	ty or particle cha y and minor com in size and type , strength, weatl and structure	aracteristic, nponents e, colour, hering,	Moisture Condition	Consistency Relative Density	& C	STRUCTURE other Observations
							-				FILL; Silty SAND, low plasticity silt, w	ine to medium gra th foreign materia	iin, dark brown, Is			'quarried are	erials include: metal. tile
				red	ES 0.40 - 0) 50 m	-										-
	—EX —		Stable	Not Encountered			- 0.5							D			-
							-										-
										1.00m	Silty CLAY: mediur	a plasticity, brown	072020			RESIDUALS	-
2	V								CI	1.10m	Silly CLAT. Mediu	r plasticity, brown-	orange	M (≈PL)	St		
											TERMINATED AT Target depth	1.10 m					
2							Ē										-
2							-										-
							-										-
Č							- 1.5										_
2 2 2																	
200																	-
2							-										-
5							-										-
04000							Ļ										-
1																	
b.							-2.0										-
							-										-
							F										-
2							ŀ										-
							Ļ										_
							0.5										
							-2.5										-
ĩ							F										-
							F										-
							Ļ										-
2																	
							Γ										-
		THOD	l		1	PENETRATION		1		IELD T			SAMPLES				SOIL CONSISTENCY
	EX R	Rip	cavato per		et	VE Very Easy (I E Easy	No Resista	nce)		PT - IP -	Standard Penetra Hand/Pocket Per		D - Dist		mple		VS - Very Soft S - Soft
	HA PT SO	Pu	nd aug sh tub	е		F Firm H Hard	Dofusal'			OCP - SP -	Dynamic Cone P Perth Sand Pene	enetrometer		vironment n wall tub		turbed'	F - Firm St - Stiff VSt Von/Stiff
5	AH PS	Air	nic dril hamm rcussic	er	pler	VH Very Hard (F	(Grubdi)		Ν	1C - PBT -	Moisture Conten	:	MOISTURE				VSt - Very Stiff H - Hard
	AS AD/	Sh V So	ort spiı lid fligh	ral aug nt auge	er er: V-Bit	Water shown		n Date	I	MP -	Borehole Impres	sion Test	D - Dry M - Moi	st			RELATIVE DENSITY VL - Very Loose
	AD/ HF/	T So A Ho	lid fligh llow flig	nt auge ght au	er: TC-Bit ger	water i	inflow			'ID - 'S -	Photoionisation I Vane Shear; P=F	Peak,	PL - Wei PL - Plas LL - Liqu	stic limit			L - Loose MD - Medium Dense
	WB RR	Wa	ashbor ck rolle	e drillir	ng	water	outflow				R=Resdual (unco	prrected kPa)	w - Moi		itent		D - Dense VD - Very Dense
	Refe	er to exp reviation	lanatory s and ba	notes f	or details of lescriptions	1		CAF		NO	(NSW/AC	T) PTY I	LTD			I	

	\square	C	arc	lno [®]						TE	ST PIT LOG SHEET
	ject:		Rådo	e Land Pty Ltd liffe, Wyee Develope	ment					Η	ole No: TP204
	atio			ells Ridge Road, Bus	hells			Job No: 82219014			Sheet: 1 of 1
				ched plan				Angle from Horizontal: -90°			e Elevation:
-				onne Excavator				Excavation Method: 400mm too			ctor: Cardno
				24/8/18				Logged By: HS			ed By: GA
-	cavat		cu. 2	Sampling & Testing				Material Description		oneck	
		1					6				
Method	Resistance	Stability	Water	Sample or Field Test	Depth (m)	Graphic Log	Classification	SOIL TYPE, plasticity or particle characteristic, colour, secondary and minor components ROCK TYPE, grain size and type, colour, fabric & texture, strength, weathering, defects and structure	Moisture Condition	Consistency Relative Density	STRUCTURE & Other Observations
						لت علت علت علت علت ع لت علت علت علت علت ع		Silty SAND: fine to medium grained, grey-brown, low 0.10m plasticity silt, with rootlets	D		TOPSOIL 0.00 m: Northern side of 'quarried area'
		ble	Not Encountered	ES 0.10 m ES 0.25 m	-		CL- CI	Silty CLAY: low to medium plasticity, pale grey	M (>PL)	St to VSt	RESIDUAL SOIL
EX		Stable	Not E		-			SILTSTONE, pale grey, thinly laminated, extremely weathered, extremely low strength			WEATHERED ROCK
				ES 0.50 m	- 0.5			0.60m			-
_								TERMINATED AT 0.60 m Target depth			
					- - 1.0 - -						-
					- - 1.5 - -						-
					- 2.0 - - -						-
ME	THOE			PENETRATION	- 2.5			ELD TESTS SAMPLES			SOIL CONSISTENCY
METHOD -1.5 EX -2.0 -2.0											
Ref abb	er to ex previatio	planatory	r notes f asis of d	or details of escriptions		CAF	D	NO (NSW/ACT) PTY LTD			

) C	arc	lno [°]						ΤE	ST PIT LOG SHEET
	ject:	:	Rado	e Land Pty Ltd liffe, Wyee Develop	ement					Η	ole No: TP205
	atio ae			ells Ridge Road, Bu	Ishells			Job No: 82219014			Sheet: 1 of 1
				ched plan onne Excavator				Angle from Horizontal: -90° Excavation Method: 400mm to			e Elevation:
-				isions:				Excavation Method: 400mm			ctor: Cardno
-				24/8/18				Logged By: HS			ed By: GA
	kcavat			Sampling & Testing				Material Descript		encon	
							c				
Method	Resistance	Stability	Water	Sample or Field Test	Depth (m)	Graphic Log	Classification	SOIL TYPE, plasticity or particle characteristic, colour, secondary and minor components ROCK TYPE, grain size and type, colour, fabric & texture, strength, weathering, defects and structure	Moisture Condition	Consistency Relative Density	STRUCTURE & Other Observations
						لت علت علت علت علت ع لت علت علت علت ولتو ع		Silty SAND: fine to medium grained, grey-brown, 0.10m plasticity silt, with rootlets	ow D		TOPSOIL 0.00 m: Approximate centre of 'quarried area'
			Not Encountered	ES 0.10 m	-		CL- CI	Silty CLAY: low to medium plasticity, pale grey	M (>PL)) St to VSt	RESIDUAL SOIL
EX-		Stable	Not Enc	ES 0.25 m	-			0.30m SILTSTONE, pale grey, thinly laminated, extreme weathered, extremely low strength	y J		WEATHERED ROCK
				ES 0.50 m	-0.5						
¥.								0.60m TERMINATED AT 0.60 m			
					- - - 1.0 -			Target depth			
					- 1.5 - -						
					- 2.0 - -						
					- - 2.5 - -						
EX HA PT SC AH AD AD HF RR	Ri Pi DN Si I Ai Si Si Si Si Si Si Si Si Si Si Si Si Si	xcavato ipper and au- ush tub onic dri ir hamn ercussi hort spi olid flig olid flig olid flig lollow fl vashbor tock roll	ger e ling per on sam ral augo nt augo ght au ght au e drillin er	pler er er: V-Bit ger ger	y (No Resistar d (Refusal) er Level on	Date	S F D F N F II F V	IP - Hand/Pocket Penetrometer D - ICP - Dynamic Cone Penetrometer ES - SP - Perth Sand Penetrometer U - IC - Moisture Content MOISTI MOISTI BT - Plate Bearing Test D - ID - Photoionisation Detector W - S - Vane Shear, P=Peak, R=Resdual (uncorrected kPa) LL -	Bulk disturt Disturbed s Environmer Thin wall tu	ample ntal sampl be 'undis	le F - Firm
AH PS AS AD AD HF WE RR Ref abb	F Po S SI D/V So D/T So FA Ho B W R R R Fer to ex	ercussi hort spi olid flig olid flig lollow fl vashbor cock roll	on sam ral aug nt aug ght au e drillin er	er er: V-Bit er: TC-Bit ger Wat	wn er inflow		F If F	BT Plate Bearing Test D - /IP Borehole Impression Test M - ID Photoionisation Detector W - 'S Vane Shear; P=Peak, PL - Beadual (uncorrected (PB)) LL -	Dry Moist Wet Plastic limit Liquid limit		RELATIVE I VL - Ve L - Lo MD - Me D - De

APPENDIX

ANALYTICAL RESULTS

CHAIN OF CUSTODY RECORD

LAB Name	SGS	
Address	16/33 Maddox St	
	Alexandria NSW 20	15
Client	Cardno (NSW/ACT)	Ptv Ltd
	PO Box 74	
	Broadmeadow	NSW 2292
Contact	Daniel McCallum	
Sampled by	Daniel McCallum	
Project Ref:	82219014	

E-mail daniel.mccallum@cardno.com.au dimce.stojanvoski@cardno.com.au

(invoice to geotech@cardno.com.au)

Date Results Required Standard TAT

Phone

Fax

			Ma	atrix			C	Containe	ers/Pre	eserva	tion				Ar	nalysis	Requir	ed		
Laboratory LIMS ID	Client Sample ID	Date Sampled	Soil	Water	Soil Jar (G) Nat. Orange	0.5-1.0 litre (G) Nat. Yellow	0.1-1.0 litre (P) Nat. Green	50mL VOA Vial (G) H ₂ SO4 Maroon	0.1-1.0 litre (P) H₂SO₄ Maroon	0.2-1.0 litre (G) H ₂ SO₄ Maroon	0.1-0.2 (P) Filtered?? Y=Yes, N=No (HNO3) Red).2l (P) NaOH Blue	Other	CL17	pH(caC12 Extract), CEC, Clay Content (%)	sbestos ID	TRH	BTEX		
1	TP101 0.1	24/08/2018	×		0/	102	00	LO T	02	02	OYK	0	0		000	×	F	8		
2	TP102 0.1	24/08/2018		1		1	1	1	†	1										
3	TP103 0.1	24/08/2018	×	1		1		1	†	†				X		••••••				
<u>Y</u>	TB104 0.1	24/08/2018	×	1		1		1	1	ł				×			ŀ			
S	TP105 0.1	24/08/2018	×	1		1	·····	†	†	İ										
G	TP106 0.1	24/08/2018	\boxtimes	1		1			<u>†</u>	†									<u> </u>	
7	TP107 0.25	24/08/2018	\mathbf{X}	1		1		†	†	†					+				<u> </u>	
8	TP108 0.1	24/08/2018	×	1		t		†	<u> </u>	ł					·				ļ	
9	TP109 0.1	24/08/2018	×	1		İ		<u>†</u>		ł						\boxtimes				
10	TP110 0.1	24/08/2018	⊠		••••••			<u> </u>	ŀ	ł						×			ļ	
11	DUP2	24/08/2018	×			·		†		·····										
12	RINS24.08.2018	24/08/2018	×						ļ						ļ		×	×		
															 					
					•••••••			······										SGS		Alexandria Labo
					••••••															
															ļļ.			SI	E183	3216 COC
															<u> </u>			Rec	eived	29 - Aug - 201

RE: SE183216 - 82219014

Dan McCallum <daniel.mccallum@cardno.com.au>

Tue 4/09/2018 9:06 AM

To:AU.SampleReceipt.Sydney (Sydney) <AU.SampleReceipt.Sydney@sgs.com>; Dimce Stojanovski <dimce.stojanovski@cardno.com.au>;

Hi Emily,

Sample TP107_0.1 wasn't meant to be in that esky, sorry about that. Could we please just have it on hold?

Regards,

Dan McCallum Graduate environmental scientist cardno

C) Cardno

Address Unit 1, 10 Denney Street. Broadmeadow, New South Wales 2292 Australia Phone Fax +61.2 4940 5545 Direct +61.2 4940 5545

Email daniel.niccallum@cardno.com.au Web.www.cardno.com.au CONNECT WITH CARDNO Cardno's menagement systems are certified to ISO9001 (quality) and AS4801/0HSAS18001 (occupational health and safety)

must be checked against an applicable hardcopy version which shall be the only document which Cardno warrants accuracy. If you are not the inlended recipient. email the sender by replying to this message and immediately delete and destroy any copies of this email and any attachments. The views or opinions expressed This ernall and its attachments may conitain confidential and/or privileged information for the sole use of the intended recipient(s). All electronically supplied data any use, distribution or copying of the information contained in this email and its attachments is strictly prohibited, if you have received this email in error, ptease are the author's own and may not reflect the views or opinions of Cardho.

To: Dan McCallum <danieł,mccallum@cardno.com.au>; Dimce Stojanovski <dimce.stojanovski@cardno.com.au> From: AU. Sample Receipt. Sydney (Sydney) [mailto: AU. Sample Receipt. Sydney@sgs.com] Sent: Monday, 3 September 2018 7:18 PM Subject: SE183216 - 82219014

Dear Daniel/Dimce,

Extra sample TP107_0.1 received. Do you want it analysed? Please advise as soon as possible. Thank You.

Regards,

Emily Yin

ANALYTICAL REPORT

ontact	Daniel McCallum	Manager	Jon Dicker
Client	CARDNO (NSW/ACT) PTY LTD	Laboratory	SGS Cairns Environmental
Address	Unit 1	Address	Unit 2, 58 Comport St
	10 Denney Street		Portsmith QLD 4870
	Broadmeadow NSW 2292		
Telephone	61 2 4965 4555	Telephone	+61 07 4035 5111
Facsimile	61 2 4965 4666	Facsimile	+61 07 4035 5122
Email	daniel.mccallum@cardno.com.au	Email	AU.Environmental.Cairns@sgs.com
Project	82219014	SGS Reference	CE135439 R0
Order Number	SE183216	Date Received	31 Aug 2018
Samples	1	Date Reported	05 Sep 2018

COMMENTS _

Accredited for compliance with ISO/IEC 17025 - Testing. NATA accredited laboratory 2562(3146).

SIGNATORIES _____

Anthony Nilsson Operations Manager

Jon Dicker Manager Northern QLD

SGS Australia Pty Ltd ABN 44 000 964 278

Environment, Health and Safety

Unit 2 58 Comport St

St Portsmith QLD 4870

Australia t +61 7 4035 5111 f +61 7 4035 5122

www.sgs.com.au

ANALYTICAL REPORT

		ample Number Sample Matrix Sample Date Sample Name	CE135439.001 Soil 24 Aug 2018 T103 0.1
Parameter	Units	LOR	
Moisture Content Method: AN002 Tested: 31/8/2018			
% Moisture	%w/w	1	6.2
Particle sizing of soils by sieving Method: AN005 Tested: 5 Passing 75µm	/9/2018 %w/w	1	19
Retained 75µm	%w/w	1	81
Particle sizing of soils <75µm by hydrometer Method: AN005	Tested: 5	;/ 9/201 8	
Clay (<0.002mm)	%w/w	0.1	15

QC SUMMARY

MB blank results are compared to the Limit of Reporting

LCS and MS spike recoveries are measured as the percentage of analyte recovered from the sample compared the the amount of analyte spiked into the sample. DUP and MSD relative percent differences are measured against their original counterpart samples according to the formula : the absolute difference of the two results divided by the average of the two results as a percentage. Where the DUP RPD is 'NA', the results are less than the LOR and thus the RPD is not applicable.

No QC samples were reported for this job.

METHOD SUMMARY

METHOD	METHODOLOGY SUMMARY
AN002	The test is carried out by drying (at either 40°C or 105°C) a known mass of sample in a weighed evaporating basin. After fully dry the sample is re-weighed. Samples such as sludge and sediment having high percentages of moisture will take some time in a drying oven for complete removal of water.
AN005	The particle size distribution of a soil is determined by wet sieving, using a maximum of 900 mL of deionised water to sieve all fractions down to 75 μm. Referenced to AS1289.3.6.1 and AS1141.11.

FOOTNOTES _

- IS Insufficient sample for analysis.
- LNR Sample listed, but not received. * NATA accreditation does not cover the
- performance of this service.
- ** Indicative data, theoretical holding time exceeded.
- LOR Limit of Reporting
- ↑↓ Raised or Lowered Limit of Reporting
- QFH QC result is above the upper tolerance
- QFL QC result is below the lower tolerance
- The sample was not analysed for this analyte NVL Not Validated
 - VL NOT Validated

Samples analysed as received. Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calcuated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

- Note that in terms of units of radioactivity:
 - a. 1 Bq is equivalent to 27 pCi
 - b. 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929.

The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here : http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical%20Documents/MP-AU-ENV-QU-022%20QA%20QC%20Plan.pdf

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This report must not be reproduced, except in full.

ANALYTICAL REPORT

CLIENT DETAILS	LABORATORY DETAILS								
Contact	Daniel McCallum	Manager	Huong Crawford						
Client	CARDNO (NSW/ACT) PTY LTD	Laboratory	SGS Alexandria Environmental						
Address	Unit 1 10 Denney Street Broadmeadow NSW 2292	Address	Unit 16, 33 Maddox St Alexandria NSW 2015						
Telephone Facsimile Email	61 2 4965 4555 61 2 4965 4666 daniel.mccallum@cardno.com.au	Telephone Facsimile Email	+61 2 8594 0400 +61 2 8594 0499 au.environmental.sydney@sgs.com						
Project Order Number Samples	82219014 (Not specified) 12	SGS Reference Date Received Date Reported	SE183216 R0 29/8/2018 13/9/2018						

COMMENTS

Accredited for compliance with ISO/IEC 17025 - Testing. NATA accredited laboratory 2562(4354).

Clay % subcontracted to SGS Cairns, 2/58 Comport St, Portsmith QLD 4870, NATA Accreditation Number: 2562, Site Number: 3146,

A portion of the sample supplied has been sub-sampled for asbestos according to SGS In-house procedures. We therefore cannot guarantee that the sub-sample is representative of the entire sample supplied. SGS Environmental Services recommends supplying approximately 50-100g of sample in a separate container

Asbestos analysed by Approved Identifier Yusuf Kuthpudin.

SIGNATORIES

Akheeqar Beniameen Chemist

Kamrul Ahsan Senior Chemist

Bennet Lo Senior Organic Chemist/Metals Chemist

kmln

Ly Kim Ha Organic Section Head

No

Huong Crawford Production Manager

S. Ravender.

Ravee Sivasubramaniam Hygiene Team Leader

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australia t +61 2 8594 0400 Australia f +61 2 8594 0499

www.sgs.com.au

VOC's in Soil [AN433] Tested: 3/9/2018

			TP101 0.1	TP102 0.1	TP103 0.1	TP104 0.1	TP105 0.1
			SOIL	SOIL	SOIL	SOIL	SOIL
			-	-	-	-	-
			24/8/2018	24/8/2018	24/8/2018	24/8/2018	24/8/2018
PARAMETER	UOM	LOR	SE183216.001	SE183216.002	SE183216.003	SE183216.004	SE183216.005
Benzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Toluene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Ethylbenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
m/p-xylene	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o-xylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total Xylenes	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Total BTEX	mg/kg	0.6	<0.6	<0.6	<0.6	<0.6	<0.6
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1

			TP106 0.1	TP107 0.25	TP108 0.1	TP109 0.1	TP110 0.1
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			24/8/2018	24/8/2018	24/8/2018	24/8/2018	24/8/2018
PARAMETER	UOM	LOR	SE183216.006	SE183216.007	SE183216.008	SE183216.009	SE183216.010
Benzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Toluene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Ethylbenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
m/p-xylene	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o-xylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total Xylenes	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Total BTEX	mg/kg	0.6	<0.6	<0.6	<0.6	<0.6	<0.6
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1

			DUP2
			SOIL
			-
			24/8/2018
PARAMETER	UOM	LOR	SE183216.011
Benzene	mg/kg	0.1	<0.1
Toluene	mg/kg	0.1	<0.1
Ethylbenzene	mg/kg	0.1	<0.1
m/p-xylene	mg/kg	0.2	<0.2
o-xylene	mg/kg	0.1	<0.1
Total Xylenes	mg/kg	0.3	<0.3
Total BTEX	mg/kg	0.6	<0.6
Naphthalene	mg/kg	0.1	<0.1

Volatile Petroleum Hydrocarbons in Soil [AN433] Tested: 3/9/2018

			TP101 0.1	TP102 0.1	TP103 0.1	TP104 0.1	TP105 0.1
			SOIL	SOIL	SOIL	SOIL	SOIL
			- 24/8/2018	- 24/8/2018	- 24/8/2018	- 24/8/2018	- 24/8/2018
PARAMETER	UOM	LOR	SE183216.001	SE183216.002	SE183216.003	SE183216.004	SE183216.005
TRH C6-C9	mg/kg	20	<20	<20	<20	<20	<20
Benzene (F0)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
TRH C6-C10	mg/kg	25	<25	<25	<25	<25	<25
TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	<25	<25	<25

			TP106 0.1	TP107 0.25	TP108 0.1	TP109 0.1	TP110 0.1
			SOIL	SOIL	SOIL	SOIL	SOIL
			-	-	-	-	-
PARAMETER	UOM	LOR	24/8/2018 SE183216.006	24/8/2018 SE183216.007	24/8/2018 SE183216.008	24/8/2018 SE183216.009	24/8/2018 SE183216.010
TRH C6-C9	mg/kg	20	<20	<20	<20	<20	<20
Benzene (F0)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
TRH C6-C10	mg/kg	25	<25	<25	<25	<25	<25
TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	<25	<25	<25

			DUP2
			SOIL
			- 24/8/2018
PARAMETER	UOM	LOR	SE183216.011
TRH C6-C9	mg/kg	20	<20
Benzene (F0)	mg/kg	0.1	<0.1
TRH C6-C10	mg/kg	25	<25
TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25

TRH (Total Recoverable Hydrocarbons) in Soil [AN403] Tested: 3/9/2018

			TP101 0.1	TP102 0.1	TP103 0.1	TP104 0.1	TP105 0.1
			SOIL	SOIL	SOIL	SOIL	SOIL
			- 24/8/2018	- 24/8/2018	- 24/8/2018	- 24/8/2018	- 24/8/2018
PARAMETER	UOM	LOR	SE183216.001	SE183216.002	SE183216.003	SE183216.004	SE183216.005
TRH C10-C14	mg/kg	20	<20	<20	<20	<20	<20
TRH C15-C28	mg/kg	45	<45	<45	<45	<45	<45
TRH C29-C36	mg/kg	45	<45	<45	<45	<45	<45
TRH C37-C40	mg/kg	100	<100	<100	<100	<100	<100
TRH >C10-C16	mg/kg	25	<25	<25	<25	<25	<25
TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	<25	<25	<25	<25	<25
TRH >C16-C34 (F3)	mg/kg	90	<90	<90	<90	<90	<90
TRH >C34-C40 (F4)	mg/kg	120	<120	<120	<120	<120	<120
TRH C10-C36 Total	mg/kg	110	<110	<110	<110	<110	<110
TRH C10-C40 Total (F bands)	mg/kg	210	<210	<210	<210	<210	<210

			TP106 0.1	TP107 0.25	TP108 0.1	TP109 0.1	TP110 0.1
			SOIL	SOIL	SOIL	SOIL	SOIL
			- 24/8/2018	- 24/8/2018	- 24/8/2018	- 24/8/2018	- 24/8/2018
PARAMETER	UOM	LOR	SE183216.006	SE183216.007	SE183216.008	SE183216.009	SE183216.010
TRH C10-C14	mg/kg	20	<20	<20	<20	<20	<20
TRH C15-C28	mg/kg	45	<45	<45	<45	<45	<45
TRH C29-C36	mg/kg	45	<45	<45	<45	<45	<45
TRH C37-C40	mg/kg	100	<100	<100	<100	<100	<100
TRH >C10-C16	mg/kg	25	<25	<25	<25	<25	<25
TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	<25	<25	<25	<25	<25
TRH >C16-C34 (F3)	mg/kg	90	<90	<90	<90	<90	<90
TRH >C34-C40 (F4)	mg/kg	120	<120	<120	<120	<120	<120
TRH C10-C36 Total	mg/kg	110	<110	<110	<110	<110	<110
TRH C10-C40 Total (F bands)	mg/kg	210	<210	<210	<210	<210	<210

			DUP2
PARAMETER	UOM	LOR	SOIL - 24/8/2018 SE183216.011
TRH C10-C14	mg/kg	20	<20
TRH C15-C28	mg/kg	45	<45
TRH C29-C36	mg/kg	45	<45
TRH C37-C40	mg/kg	100	<100
TRH >C10-C16	mg/kg	25	<25
TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	<25
TRH >C16-C34 (F3)	mg/kg	90	<90
TRH >C34-C40 (F4)	mg/kg	120	<120
TRH C10-C36 Total	mg/kg	110	<110
TRH C10-C40 Total (F bands)	mg/kg	210	<210

SE183216 R0

PAH (Polynuclear Aromatic Hydrocarbons) in Soil [AN420] Tested: 3/9/2018

			TP101 0.1	TP102 0.1	TP103 0.1	TP104 0.1	TP105 0.1
			SOIL	SOIL	SOIL	SOIL	SOIL
			- 3012	- 3012			-
			24/8/2018	24/8/2018	24/8/2018	24/8/2018	24/8/2018
PARAMETER	UOM	LOR	SE183216.001	SE183216.002	SE183216.003	SE183216.004	SE183216.005
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td></lor=0<>	TEQ (mg/kg)	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td></lor=lor<>	TEQ (mg/kg)	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td></lor=lor>	TEQ (mg/kg)	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Total PAH (18)	mg/kg	0.8	<0.8	<0.8	<0.8	<0.8	<0.8
Total PAH (NEPM/WHO 16)	mg/kg	0.8	<0.8	<0.8	<0.8	<0.8	<0.8

			TP106 0.1	TP107 0.25	TP108 0.1	TP109 0.1	TP110 0.1
			SOIL	SOIL	SOIL	SOIL	SOIL
			-	- 3012			- 3012
			24/8/2018	24/8/2018	24/8/2018	24/8/2018	24/8/2018
PARAMETER	UOM	LOR	SE183216.006	SE183216.007	SE183216.008	SE183216.009	SE183216.010
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td></lor=0<>	TEQ (mg/kg)	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td></lor=lor<>	TEQ (mg/kg)	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td></lor=lor>	TEQ (mg/kg)	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Total PAH (18)	mg/kg	0.8	<0.8	<0.8	<0.8	<0.8	<0.8
Total PAH (NEPM/WHO 16)	mg/kg	0.8	<0.8	<0.8	<0.8	<0.8	<0.8

SE183216 R0

PAH (Polynuclear Aromatic Hydrocarbons) in Soil [AN420] Tested: 3/9/2018 (continued)

			DUP2
			SOIL
			-
			24/8/2018
PARAMETER	UOM	LOR	SE183216.011
Naphthalene	mg/kg	0.1	<0.1
2-methylnaphthalene	mg/kg	0.1	<0.1
1-methylnaphthalene	mg/kg	0.1	<0.1
Acenaphthylene	mg/kg	0.1	<0.1
Acenaphthene	mg/kg	0.1	<0.1
Fluorene	mg/kg	0.1	<0.1
Phenanthrene	mg/kg	0.1	<0.1
Anthracene	mg/kg	0.1	<0.1
Fluoranthene	mg/kg	0.1	<0.1
Pyrene	mg/kg	0.1	<0.1
Benzo(a)anthracene	mg/kg	0.1	<0.1
Chrysene	mg/kg	0.1	<0.1
Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1
Benzo(k)fluoranthene	mg/kg	0.1	<0.1
Benzo(a)pyrene	mg/kg	0.1	<0.1
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1
Dibenzo(ah)anthracene	mg/kg	0.1	<0.1
Benzo(ghi)perylene	mg/kg	0.1	<0.1
Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td></lor=0<>	TEQ (mg/kg)	0.2	<0.2
Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td><0.3</td></lor=lor<>	TEQ (mg/kg)	0.3	<0.3
Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td></lor=lor>	TEQ (mg/kg)	0.2	<0.2
Total PAH (18)	mg/kg	0.8	<0.8
Total PAH (NEPM/WHO 16)	mg/kg	0.8	<0.8

SE183216 R0

OC Pesticides in Soil [AN420] Tested: 3/9/2018

			TP101 0.1	TP102 0.1	TP103 0.1	TP104 0.1	TP105 0.1
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			24/8/2018	24/8/2018	24/8/2018	24/8/2018	24/8/2018
PARAMETER	UOM	LOR	SE183216.001	SE183216.002	SE183216.003	SE183216.004	SE183216.005
Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Lindane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Beta BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Delta BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor epoxide	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
o,p'-DDE	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Gamma Chlordane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha Chlordane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
trans-Nonachlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
p,p'-DDE	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Endrin	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o,p'-DDD	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
o,p'-DDT	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Beta Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
p,p'-DDD	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
p,p'-DDT	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan sulphate	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Ketone	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Isodrin	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Mirex	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total CLP OC Pesticides	mg/kg	1	<1	<1	<1	<1	<1

OC Pesticides in Soil [AN420] Tested: 3/9/2018 (continued)

			TP106 0.1	TP107 0.25	TP108 0.1	TP109 0.1	TP110 0.1
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
PARAMETER	UOM	LOR	24/8/2018 SE183216.006	24/8/2018 SE183216.007	24/8/2018 SE183216.008	24/8/2018 SE183216.009	24/8/2018 SE183216.010
Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Lindane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Beta BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Delta BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor epoxide	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
o,p'-DDE	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Gamma Chlordane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha Chlordane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
trans-Nonachlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
p,p'-DDE	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Endrin	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o,p'-DDD	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
o,p'-DDT	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Beta Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
p,p'-DDD	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
p,p'-DDT	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan sulphate	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Ketone	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Isodrin	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Mirex	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total CLP OC Pesticides	mg/kg	1	<1	<1	<1	<1	<1

SE183216 R0

OC Pesticides in Soil [AN420] Tested: 3/9/2018 (continued)

			DUP2 SOIL - 24/8/2018
PARAMETER	UOM	LOR	SE183216.011
Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1
Alpha BHC	mg/kg	0.1	<0.1
Lindane	mg/kg	0.1	<0.1
Heptachlor	mg/kg	0.1	<0.1
Aldrin	mg/kg	0.1	<0.1
Beta BHC	mg/kg	0.1	<0.1
Delta BHC	mg/kg	0.1	<0.1
Heptachlor epoxide	mg/kg	0.1	<0.1
o,p'-DDE	mg/kg	0.1	<0.1
Alpha Endosulfan	mg/kg	0.2	<0.2
Gamma Chlordane	mg/kg	0.1	<0.1
Alpha Chlordane	mg/kg	0.1	<0.1
trans-Nonachlor	mg/kg	0.1	<0.1
p,p'-DDE	mg/kg	0.1	<0.1
Dieldrin	mg/kg	0.2	<0.2
Endrin	mg/kg	0.2	<0.2
o,p'-DDD	mg/kg	0.1	<0.1
o,p'-DDT	mg/kg	0.1	<0.1
Beta Endosulfan	mg/kg	0.2	<0.2
p,p'-DDD	mg/kg	0.1	<0.1
p,p'-DDT	mg/kg	0.1	<0.1
Endosulfan sulphate	mg/kg	0.1	<0.1
Endrin Aldehyde	mg/kg	0.1	<0.1
Methoxychlor	mg/kg	0.1	<0.1
Endrin Ketone	mg/kg	0.1	<0.1
Isodrin	mg/kg	0.1	<0.1
Mirex	mg/kg	0.1	<0.1
Total CLP OC Pesticides	mg/kg	1	<1

OP Pesticides in Soil [AN420] Tested: 3/9/2018

			TP101 0.1	TP102 0.1	TP103 0.1	TP104 0.1	TP105 0.1
			SOIL - 24/8/2018	SOIL - 24/8/2018	SOIL - 24/8/2018	SOIL - 24/8/2018	SOIL - 24/8/2018
PARAMETER	UOM	LOR	SE183216.001	SE183216.002	SE183216.003	SE183216.004	SE183216.005
Dichlorvos	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Dimethoate	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Diazinon (Dimpylate)	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Fenitrothion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Malathion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Bromophos Ethyl	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Methidathion	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Ethion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Total OP Pesticides*	mg/kg	1.7	<1.7	<1.7	<1.7	<1.7	<1.7

			TP106 0.1	TP107 0.25	TP108 0.1	TP109 0.1	TP110 0.1
			SOIL	SOIL	SOIL	SOIL	SOIL
			-	-	-	-	-
			24/8/2018	24/8/2018	24/8/2018	24/8/2018	24/8/2018
PARAMETER	UOM	LOR	SE183216.006	SE183216.007	SE183216.008	SE183216.009	SE183216.010
Dichlorvos	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Dimethoate	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Diazinon (Dimpylate)	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Fenitrothion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Malathion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Bromophos Ethyl	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Methidathion	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Ethion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Total OP Pesticides*	mg/kg	1.7	<1.7	<1.7	<1.7	<1.7	<1.7

			DUP2 SOIL - 24/8/2018
PARAMETER	UOM	LOR	SE183216.011
Dichlorvos	mg/kg	0.5	<0.5
Dimethoate	mg/kg	0.5	<0.5
Diazinon (Dimpylate)	mg/kg	0.5	<0.5
Fenitrothion	mg/kg	0.2	<0.2
Malathion	mg/kg	0.2	<0.2
Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2
Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2
Bromophos Ethyl	mg/kg	0.2	<0.2
Methidathion	mg/kg	0.5	<0.5
Ethion	mg/kg	0.2	<0.2
Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2
Total OP Pesticides*	mg/kg	1.7	<1.7

PCBs in Soil [AN420] Tested: 3/9/2018

			TP101 0.1	TP102 0.1	TP103 0.1	TP104 0.1	TP105 0.1
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			24/8/2018	24/8/2018	24/8/2018	24/8/2018	24/8/2018
PARAMETER	UOM	LOR	SE183216.001	SE183216.002	SE183216.003	SE183216.004	SE183216.005
Arochlor 1016	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1221	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1232	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1242	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1248	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1254	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1260	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1262	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1268	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Total PCBs (Arochlors)	mg/kg	1	<1	<1	<1	<1	<1

			TP106 0.1	TP107 0.25	TP108 0.1	TP109 0.1	TP110 0.1
			SOIL	SOIL	SOIL	SOIL	SOIL
			24/8/2018	24/8/2018	24/8/2018	24/8/2018	24/8/2018
PARAMETER	UOM	LOR	SE183216.006	SE183216.007	SE183216.008	SE183216.009	SE183216.010
Arochlor 1016	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1221	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1232	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1242	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1248	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1254	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1260	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1262	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1268	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Total PCBs (Arochlors)	mg/kg	1	<1	<1	<1	<1	<1

			DUP2
PARAMETER	UOM	LOR	SOIL - 24/8/2018 SE183216.011
Arochlor 1016	mg/kg	0.2	<0.2
Arochlor 1221	mg/kg	0.2	<0.2
Arochlor 1232	mg/kg	0.2	<0.2
Arochlor 1242	mg/kg	0.2	<0.2
Arochlor 1248	mg/kg	0.2	<0.2
Arochlor 1254	mg/kg	0.2	<0.2
Arochlor 1260	mg/kg	0.2	<0.2
Arochlor 1262	mg/kg	0.2	<0.2
Arochlor 1268	mg/kg	0.2	<0.2
Total PCBs (Arochlors)	mg/kg	1	<1

pH in soil (1:5) [AN101] Tested: 3/9/2018

			TP103 0.1
			SOIL
			- 24/8/2018
PARAMETER	UOM	LOR	SE183216.003
pH (CaCl2)*	pH Units	0.1	4.1

Exchangeable Cations and Cation Exchange Capacity (CEC/ESP/SAR) [AN122] Tested: 3/9/2018

PARAMETER	UOM	LOR	TP103 0.1 SOIL - 24/8/2018 SE183216.003
Exchangeable Sodium, Na	mg/kg	2	8
Exchangeable Sodium, Na	meq/100g	0.01	0.04
Exchangeable Sodium Percentage*	%	0.1	5.7
Exchangeable Potassium, K	mg/kg	2	23
Exchangeable Potassium, K	meq/100g	0.01	0.06
Exchangeable Potassium Percentage*	%	0.1	9.5
Exchangeable Calcium, Ca	mg/kg	2	68
Exchangeable Calcium, Ca	meq/100g	0.01	0.34
Exchangeable Calcium Percentage*	%	0.1	54.0
Exchangeable Magnesium, Mg	mg/kg	2	24
Exchangeable Magnesium, Mg	meq/100g	0.02	0.19
Exchangeable Magnesium Percentage*	%	0.1	30.7
Cation Exchange Capacity	meq/100g	0.02	0.63

SE183216 R0

Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES [AN040/AN320] Tested: 3/9/2018

			TP101 0.1	TP102 0.1	TP103 0.1	TP104 0.1	TP105 0.1
			SOIL	SOIL	SOIL	SOIL	SOIL
			24/8/2018	24/8/2018	24/8/2018	24/8/2018	24/8/2018
PARAMETER	UOM	LOR	SE183216.001	SE183216.002	SE183216.003	SE183216.004	SE183216.005
Arsenic, As	mg/kg	1	<1	1	2	2	3
Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Chromium, Cr	mg/kg	0.3	2.7	1.3	3.0	3.5	1.5
Copper, Cu	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Lead, Pb	mg/kg	1	2	2	3	2	2
Nickel, Ni	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Zinc, Zn	mg/kg	2	<2.0	2.4	3.0	2.5	<2.0

			TP106 0.1	TP107 0.25	TP108 0.1	TP109 0.1	TP110 0.1
			SOIL	SOIL	SOIL	SOIL	SOIL
			24/8/2018	24/8/2018	24/8/2018	24/8/2018	24/8/2018
PARAMETER	UOM	LOR	SE183216.006	SE183216.007	SE183216.008	SE183216.009	SE183216.010
Arsenic, As	mg/kg	1	1	<1	<1	1	2
Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Chromium, Cr	mg/kg	0.3	0.9	2.3	0.5	1.4	1.0
Copper, Cu	mg/kg	0.5	<0.5	<0.5	0.8	<0.5	0.5
Lead, Pb	mg/kg	1	1	<1	<1	1	2
Nickel, Ni	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Zinc, Zn	mg/kg	2	4.3	<2.0	2.6	2.5	3.2

			DUP2
			SOIL
			24/8/2018
PARAMETER	UOM	LOR	SE183216.011
Arsenic, As	mg/kg	1	1
Cadmium, Cd	mg/kg	0.3	<0.3
Chromium, Cr	mg/kg	0.3	2.8
Copper, Cu	mg/kg	0.5	<0.5
Lead, Pb	mg/kg	1	2
Nickel, Ni	mg/kg	0.5	<0.5
Zinc, Zn	mg/kg	2	<2.0

Mercury in Soil [AN312] Tested: 3/9/2018

			TP101 0.1	TP102 0.1	TP103 0.1	TP104 0.1	TP105 0.1
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			24/8/2018	24/8/2018	24/8/2018	24/8/2018	24/8/2018
PARAMETER	UOM	LOR	SE183216.001	SE183216.002	SE183216.003	SE183216.004	SE183216.005
Mercury	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05

			TP106 0.1	TP107 0.25	TP108 0.1	TP109 0.1	TP110 0.1
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			24/8/2018	24/8/2018	24/8/2018	24/8/2018	24/8/2018
PARAMETER	UOM	LOR	SE183216.006	SE183216.007	SE183216.008	SE183216.009	SE183216.010
Mercury	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05

			DUP2
			SOIL
			24/8/2018
PARAMETER	UOM	LOR	SE183216.011
Mercury	mg/kg	0.05	<0.05

Moisture Content [AN002] Tested: 3/9/2018

			TP101 0.1	TP102 0.1	TP103 0.1	TP104 0.1	TP105 0.1
			SOIL	SOIL	SOIL	SOIL	SOIL
			24/8/2018	24/8/2018	24/8/2018	24/8/2018	24/8/2018
PARAMETER	UOM	LOR	SE183216.001	SE183216.002	SE183216.003	SE183216.004	SE183216.005
% Moisture	%w/w	0.5	5.8	7.7	6.5	6.6	9.6

			TP106 0.1	TP107 0.25	TP108 0.1	TP109 0.1	TP110 0.1
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			24/8/2018	24/8/2018	24/8/2018	24/8/2018	24/8/2018
PARAMETER	UOM	LOR	SE183216.006	SE183216.007	SE183216.008	SE183216.009	SE183216.010
% Moisture	%w/w	0.5	8.0	13	18	9.2	13

			DUP2
			SOIL
			24/8/2018
PARAMETER	UOM	LOR	SE183216.011
% Moisture	%w/w	0.5	8.0

Fibre Identification in soil [AN602] Tested: 4/9/2018

			TP101 0.1	TP109 0.1
			SOIL	SOIL
			24/8/2018	24/8/2018
PARAMETER	UOM	LOR	SE183216.001	SE183216.009
Asbestos Detected	No unit	-	No	No
Estimated Fibres*	%w/w	0.01	<0.01	<0.01

ANALYTICAL RESULTS

SE183216 R0

VOCs in Water [AN433] Tested: 3/9/2018

			RINS 24.08.2018
PARAMETER	UOM	LOR	WATER - 24/8/2018 SE183216.012
Benzene	µg/L	0.5	<0.5
Toluene	µg/L	0.5	<0.5
Ethylbenzene	µg/L	0.5	<0.5
m/p-xylene	µg/L	1	<1
o-xylene	µg/L	0.5	<0.5
Total Xylenes	µg/L	1.5	<1.5
Total BTEX	µg/L	3	<3
Naphthalene	μg/L	0.5	<0.5

Volatile Petroleum Hydrocarbons in Water [AN433] Tested: 3/9/2018

			RINS 24.08.2018
			WATER
			- 24/8/2018
PARAMETER	UOM	LOR	SE183216.012
TRH C6-C9	µg/L	40	<40
Benzene (F0)	µg/L	0.5	<0.5
TRH C6-C10	µg/L	50	<50
TRH C6-C10 minus BTEX (F1)	µg/L	50	<50

ANALYTICAL RESULTS

SE183216 R0

TRH (Total Recoverable Hydrocarbons) in Water [AN403] Tested: 31/8/2018

			RINS 24.08.2018
			WATER - 24/8/2018
PARAMETER	UOM	LOR	SE183216.012
TRH C10-C14	µg/L	50	<50
TRH C15-C28	µg/L	200	<200
TRH C29-C36	µg/L	200	<200
TRH C37-C40	µg/L	200	<200
TRH >C10-C16	µg/L	60	<60
TRH >C16-C34 (F3)	µg/L	500	<500
TRH >C34-C40 (F4)	µg/L	500	<500
TRH C10-C36	µg/L	450	<450
TRH C10-C40	µg/L	650	<650
TRH >C10-C16 - Naphthalene (F2)	µg/L	60	<60

ANALYTICAL RESULTS

Sample Subcontracted [] Tested: 13/9/2018

			TP103 0.1
			SOIL
			- 24/8/2018
PARAMETER	UOM	LOR	SE183216.003
Sample Subcontracted*	No unit	-	Subcontracted
SGS Cairns*	No unit	-	Subcontracted

METHOD	METHODOLOGY SUMMARY
AN002	The test is carried out by drying (at either 40°C or 105°C) a known mass of sample in a weighed evaporating basin. After fully dry the sample is re-weighed. Samples such as sludge and sediment having high percentages of moisture will take some time in a drying oven for complete removal of water.
AN040/AN320	A portion of sample is digested with nitric acid to decompose organic matter and hydrochloric acid to complete the digestion of metals. The digest is then analysed by ICP OES with metals results reported on the dried sample basis. Based on USEPA method 200.8 and 6010C.
AN040	A portion of sample is digested with Nitric acid to decompose organic matter and Hydrochloric acid to complete the digestion of metals and then filtered for analysis by ASS or ICP as per USEPA Method 200.8.
AN101	pH in Soil Sludge Sediment and Water: pH is measured electrometrically using a combination electrode and is calibrated against 3 buffers purchased commercially. For soils, sediments and sludges, an extract with water (or 0.01M CaCl2) is made at a ratio of 1:5 and the pH determined and reported on the extract. Reference APHA 4500-H+.
AN122	Exchangeable Cations, CEC and ESP: Soil sample is extracted in 1M Ammonium Acetate at pH=7 (or 1M Ammonium Chloride at pH=7) with cations (Na, K, Ca & Mg) then determined by ICP OES/ICP MS and reported as Exchangeable Cations. For saline soils, these results can be corrected for water soluble cations and reported as Exchangeable cations in meq/100g or soil can be pre-treated (aqueous ethanol/aqueous glycerol) prior to extraction. Cation Exchange Capacity (CEC) is the sum of the exchangeable cations in meq/100g.
AN122	The Exchangeable Sodium Percentage (ESP) is calculated as the exchangeable sodium divided by the CEC (all in meq/100g) times 100. ESP can be used to categorise the sodicity of the soil as below:
	ESP < 6%non-sodicESP 6-15%sodicESP >15%strongly sodic
	Method is referenced to Rayment and Lyons, 2011, sections 15D3 and 15N1
AN312	Mercury by Cold Vapour AAS in Soils: After digestion with nitric acid, hydrogen peroxide and hydrochloric acid, mercury ions are reduced by stannous chloride reagent in acidic solution to elemental mercury. This mercury vapour is purged by nitrogen into a cold cell in an atomic absorption spectrometer or mercury analyser. Quantification is made by comparing absorbances to those of the calibration standards. Reference APHA 3112/3500
AN403	Total Recoverable Hydrocarbons: Determination of Hydrocarbons by gas chromatography after a solvent extraction. Detection is by flame ionisation detector (FID) that produces an electronic signal in proportion to the combustible matter passing through it. Total Recoverable Hydrocarbons (TRH) are routinely reported as four alkane groupings based on the carbon chain length of the compounds: C6-C9, C10-C14, C15-C28 and C29-C36 and in recognition of the NEPM 1999 (2013), >C10-C16 (F2), >C16-C34 (F3) and >C34-C40 (F4). F2 is reported directly and also corrected by subtracting Naphthalene (from VOC method AN433) where available.
AN403	Additionally, the volatile C6-C9 fraction may be determined by a purge and trap technique and GC/MS because of the potential for volatiles loss. Total Petroleum Hydrocarbons (TPH) follows the same method of analysis after silica gel cleanup of the solvent extract. Aliphatic/Aromatic Speciation follows the same method of analysis after fractionation of the solvent extract over silica with differential polarity of the eluent solvents.
AN403	The GC/FID method is not well suited to the analysis of refined high boiling point materials (ie lubricating oils or greases) but is particularly suited for measuring diesel, kerosene and petrol if care to control volatility is taken. This method will detect naturally occurring hydrocarbons, lipids, animal fats, phenols and PAHs if they are present at sufficient levels, dependent on the use of specific cleanup/fractionation techniques. Reference USEPA 3510B, 8015B.
AN420	(SVOCs) including OC, OP, PCB, Herbicides, PAH, Phthalates and Speciated Phenols (etc) in soils, sediments and waters are determined by GCMS/ECD technique following appropriate solvent extraction process (Based on USEPA 3500C and 8270D).
AN420	SVOC Compounds: Semi-Volatile Organic Compounds (SVOCs) including OC, OP, PCB, Herbicides, PAH, Phthalates and Speciated Phenols in soils, sediments and waters are determined by GCMS/ECD technique following appropriate solvent extraction process (Based on USEPA 3500C and 8270D).
AN433	VOCs and C6-C9 Hydrocarbons by GC-MS P&T: VOC's are volatile organic compounds. The sample is presented to a gas chromatograph via a purge and trap (P&T) concentrator and autosampler and is detected with a Mass Spectrometer (MSD). Solid samples are initially extracted with methanol whilst liquid samples are processed directly. References: USEPA 5030B, 8020A, 8260.
AN602	Qualitative identification of chrysotile, amosite and crocidolite in bulk samples by polarised light microscopy (PLM) in conjunction with dispersion staining (DS). AS4964 provides the basis for this document. Unequivocal identification of the asbestos minerals present is made by obtaining sufficient diagnostic `clues`, which provide a reasonable degree of certainty, dispersion staining is a mandatory `clue` for positive identification. If sufficient `clues` are absent, then positive identification of asbestos is not possible. This procedure requires removal of suspect fibres/bundles from the sample which cannot be returned.

AN602	Fibres/material that cannot be unequivocably identified as one of the three asbestos forms, will be reported as unknown mineral fibres (umf) The fibres detected may or may not be asbestos fibres.
AN602	AS4964.2004 Method for the Qualitative Identification of Asbestos in Bulk Samples, Section 8.4, Trace Analysis Criteria, Note 4 states:"Depending upon sample condition and fibre type, the detection limit of this technique has been found to lie generally in the range of 1 in 1,000 to 1 in 10,000 parts by weight, equivalent to 1 to 0.1 g/kg."
AN602	The sample can be reported "no asbestos found at the reporting limit of 0.1 g/kg" (<0.01%w/w) where AN602 section 4.5 of this method has been followed, and if-
	 (a) no trace asbestos fibres have been detected (i.e. no 'respirable' fibres): (b) the estimated weight of non-respirable asbestos fibre bundles and/or the estimated weight of asbestos in asbestos-containing materials are found to be less than 0.1g/kg: and (c) these non-respirable asbestos fibre bundles and/or the asbestos containing materials are only visible under stereo-microscope viewing conditions.

FOOTNOTES

*	NATA accreditation does not cover	-	Not analysed.	UOM	Unit of Measure.
	the performance of this service.	NVL	Not validated.	LOR	Limit of Reporting.
**	Indicative data, theoretical holding	IS	Insufficient sample for analysis.	↑↓	Raised/lowered Limit of
	time exceeded.	LNR	Sample listed, but not received.		Reporting.

Samples analysed as received.

Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calculated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

Note that in terms of units of radioactivity:

- a. 1 Bq is equivalent to 27 pCi
- b. 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929.

The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here : http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical%20Documents/MP-AU-ENV-QU-022%20QA%20QC%20Plan.pdf

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sqs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This report must not be reproduced, except in full.

STATEMENT OF QA/QC PERFORMANCE

CLIENT DETAILS		LABORATORY DETAI	LS
Contact	Daniel McCallum	Manager	Huong Crawford
Client	CARDNO (NSW/ACT) PTY LTD	Laboratory	SGS Alexandria Environmental
Address	Unit 1 10 Denney Street Broadmeadow NSW 2292	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	61 2 4965 4555	Telephone	+61 2 8594 0400
Facsimile	61 2 4965 4666	Facsimile	+61 2 8594 0499
Email	daniel.mccallum@cardno.com.au	Email	au.environmental.sydney@sgs.com
Project	82219014	SGS Reference	SE183216 R0
Order Number	(Not specified)	Date Received	29 Aug 2018
Samples	12	Date Reported	13 Sep 2018

COMMENTS

All the laboratory data for each environmental matrix was compared to SGS' stated Data Quality Objectives (DQO). Comments arising from the comparison were made and are reported below.

The data relating to sampling was taken from the Chain of Custody document and was supplied by the Client. This QA/QC Statement must be read in conjunction with the referenced Analytical Report. The Statement and the Analytical Report must not be reproduced except in full.

All Data Quality Objectives were met with the exception of the following:

Extraction Date	pH in soil (1:5)	1 item
	VOCs in Water	1 item
	Volatile Petroleum Hydrocarbons in Water	1 item

Samples clearly labelled	Yes	Complete documentation received	Yes	
Sample container provider	SGS	Sample cooling method	Ice Bricks	
Samples received in correct containers	Yes	Sample counts by matrix	12 Soil	
Date documentation received	29/8/2018	Type of documentation received	COC	
Samples received in good order	Yes	Samples received without headspace	Yes	
Sample temperature upon receipt	6.1°C	Sufficient sample for analysis	Yes	
Turnaround time requested	Standard			

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

Unit 16 33 Maddox St Alexandria NSW 2015 PO Box 6432 Bourke Rd BC Alexandria NSW 2015

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or **Red** with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

Exchangeable Cations and C Sample Name		QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	ME-(AU)-[ENV]AI
TP103 0.1	Sample No. SE183216.003	LB155649		29 Aug 2018		03 Sep 2018	21 Sep 2018	Analysed 04 Sep 2018
P 103 0.1	SE 1632 10.003	LB155649	24 Aug 2018	29 Aug 2018	21 Sep 2018	03 Sep 2018	21 Sep 2016	04 Sep 2018
ibre Identification in soil							Method:	ME-(AU)-[ENV]AI
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
TP101 0.1	SE183216.001	LB155838	24 Aug 2018	29 Aug 2018	24 Aug 2019	04 Sep 2018	24 Aug 2019	05 Sep 2018
TP109 0.1	SE183216.009	LB155838	24 Aug 2018	29 Aug 2018	24 Aug 2019	04 Sep 2018	24 Aug 2019	05 Sep 2018
lercury in Soil								ME-(AU)-[ENV]A
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
TP101 0.1	SE183216.001	LB155630	24 Aug 2018	29 Aug 2018	21 Sep 2018	03 Sep 2018	21 Sep 2018	04 Sep 2018
				•			· · · · · · · · · · · · · · · · · · ·	
TP102 0.1	SE183216.002	LB155630	24 Aug 2018	29 Aug 2018 29 Aug 2018	21 Sep 2018	03 Sep 2018	21 Sep 2018	04 Sep 2018
FP103 0.1	SE183216.003	LB155630	24 Aug 2018	-	21 Sep 2018	03 Sep 2018	21 Sep 2018	04 Sep 2018
TP104 0.1	SE183216.004	LB155630	24 Aug 2018	29 Aug 2018	21 Sep 2018	03 Sep 2018	21 Sep 2018	04 Sep 2018
TP105 0.1	SE183216.005	LB155630	24 Aug 2018	29 Aug 2018	21 Sep 2018	03 Sep 2018	21 Sep 2018	04 Sep 2018
TP106 0.1	SE183216.006	LB155630	24 Aug 2018	29 Aug 2018	21 Sep 2018	03 Sep 2018	21 Sep 2018	04 Sep 2018
TP107 0.25	SE183216.007	LB155630	24 Aug 2018	29 Aug 2018	21 Sep 2018	03 Sep 2018	21 Sep 2018	04 Sep 2018
FP108 0.1	SE183216.008	LB155630	24 Aug 2018	29 Aug 2018	21 Sep 2018	03 Sep 2018	21 Sep 2018	04 Sep 2018
FP109 0.1	SE183216.009	LB155630	24 Aug 2018	29 Aug 2018	21 Sep 2018	03 Sep 2018	21 Sep 2018	04 Sep 2018
P110 0.1	SE183216.010	LB155630	24 Aug 2018	29 Aug 2018	21 Sep 2018	03 Sep 2018	21 Sep 2018	04 Sep 201
)UP2	SE183216.011	LB155630	24 Aug 2018	29 Aug 2018	21 Sep 2018	03 Sep 2018	21 Sep 2018	04 Sep 201
oisture Content							Method:	ME-(AU)-[ENV]A
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
P101 0.1	SE183216.001	LB155628	24 Aug 2018	29 Aug 2018	07 Sep 2018	03 Sep 2018	08 Sep 2018	04 Sep 2018
P102 0.1	SE183216.002	LB155628	24 Aug 2018	29 Aug 2018	07 Sep 2018	03 Sep 2018	08 Sep 2018	04 Sep 2018
P103 0.1	SE183216.003	LB155628	24 Aug 2018	29 Aug 2018	07 Sep 2018	03 Sep 2018	08 Sep 2018	04 Sep 201
P104 0.1	SE183216.004	LB155628	24 Aug 2018	29 Aug 2018	07 Sep 2018	03 Sep 2018	08 Sep 2018	04 Sep 201
P105 0.1	SE183216.005	LB155628	24 Aug 2018	29 Aug 2018	07 Sep 2018	03 Sep 2018	08 Sep 2018	04 Sep 201
P106 0.1	SE183216.006	LB155628	24 Aug 2018	29 Aug 2018	07 Sep 2018	03 Sep 2018	08 Sep 2018	04 Sep 201
P107 0.25	SE183216.007	LB155628	24 Aug 2018	29 Aug 2018	07 Sep 2018	03 Sep 2018	08 Sep 2018	04 Sep 201
P108 0.1	SE183216.008	LB155628	24 Aug 2018	29 Aug 2018	07 Sep 2018	03 Sep 2018	08 Sep 2018	04 Sep 2018
P109 0.1	SE183216.009	LB155628	24 Aug 2018	29 Aug 2018	07 Sep 2018	03 Sep 2018	08 Sep 2018	04 Sep 2018
FP110 0.1	SE183216.010	LB155628	24 Aug 2018	29 Aug 2018	07 Sep 2018	03 Sep 2018	08 Sep 2018	04 Sep 2018
)UP2	SE183216.011	LB155628	24 Aug 2018	29 Aug 2018	07 Sep 2018	03 Sep 2018	08 Sep 2018	04 Sep 2018
C Pesticides in Soil							Method:	ME-(AU)-[ENV]A
ample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
P101 0.1	SE183216.001	LB155627	24 Aug 2018	29 Aug 2018	07 Sep 2018	03 Sep 2018	13 Oct 2018	04 Sep 201
P102 0.1	SE183216.002	LB155627	24 Aug 2018	29 Aug 2018	07 Sep 2018	03 Sep 2018	13 Oct 2018	04 Sep 201
P103 0.1	SE183216.003	LB155627	24 Aug 2018	29 Aug 2018	07 Sep 2018	03 Sep 2018	13 Oct 2018	04 Sep 2018
P104 0.1	SE183216.004	LB155627	24 Aug 2018	29 Aug 2018	07 Sep 2018	03 Sep 2018	13 Oct 2018	04 Sep 2018
P105 0.1	SE183216.005	LB155627	24 Aug 2018	29 Aug 2018	07 Sep 2018	03 Sep 2018	13 Oct 2018	04 Sep 2018
FP106 0.1	SE183216.006	LB155627	24 Aug 2018	29 Aug 2018	07 Sep 2018	03 Sep 2018	13 Oct 2018	04 Sep 2018
P107 0.25	SE183216.007	LB155627	24 Aug 2018	29 Aug 2018	07 Sep 2018	03 Sep 2018	13 Oct 2018	04 Sep 201
P108 0.1	SE183216.008	LB155627	24 Aug 2018	29 Aug 2018	07 Sep 2018	03 Sep 2018	13 Oct 2018	04 Sep 201
P109 0.1	SE183216.009	LB155627	24 Aug 2018	29 Aug 2018	07 Sep 2018	03 Sep 2018	13 Oct 2018	04 Sep 201
P110 0.1	SE183216.010	LB155627	24 Aug 2018	29 Aug 2018	07 Sep 2018	03 Sep 2018	13 Oct 2018	04 Sep 201
0UP2	SE183216.011	LB155627	24 Aug 2018	29 Aug 2018	07 Sep 2018	03 Sep 2018	13 Oct 2018	04 Sep 201
Pesticides in Soil			J -		P	e		ME-(AU)-[ENV]/
ample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
P101 0.1	SE183216.001	LB155627	24 Aug 2018	29 Aug 2018	07 Sep 2018	03 Sep 2018	13 Oct 2018	04 Sep 201
P102 0.1	SE183216.002	LB155627	24 Aug 2018	29 Aug 2018	07 Sep 2018	03 Sep 2018	13 Oct 2018	04 Sep 201
P102 0.1	SE183216.002	LB155627	24 Aug 2018 24 Aug 2018	29 Aug 2018 29 Aug 2018	07 Sep 2018	03 Sep 2018	13 Oct 2018	04 Sep 201
FP104 0.1		LB155627	24 Aug 2018 24 Aug 2018		07 Sep 2018			04 Sep 2018
P104 0.1 P105 0.1	SE183216.004 SE183216.005	LB155627	24 Aug 2018 24 Aug 2018	29 Aug 2018 29 Aug 2018	07 Sep 2018 07 Sep 2018	03 Sep 2018 03 Sep 2018	13 Oct 2018 13 Oct 2018	04 Sep 2018 04 Sep 2018
								04 Sep 2018 05 Sep 2018
P106 0.1	SE183216.006	LB155627	24 Aug 2018	29 Aug 2018	07 Sep 2018	03 Sep 2018	13 Oct 2018	
P107 0.25	SE183216.007	LB155627	24 Aug 2018	29 Aug 2018	07 Sep 2018	03 Sep 2018	13 Oct 2018	05 Sep 2018

05 Sep 2018

05 Sep 2018

05 Sep 2018

TP108 0.1

TP109 0.1

TP110 0.1

SE183216.008

SE183216.009

SE183216.010

LB155627

LB155627

LB155627

24 Aug 2018

24 Aug 2018

24 Aug 2018

29 Aug 2018

29 Aug 2018

29 Aug 2018

07 Sep 2018

07 Sep 2018

07 Sep 2018

03 Sep 2018

03 Sep 2018

03 Sep 2018

13 Oct 2018

13 Oct 2018

13 Oct 2018

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

OP Pesticides in Soil (continu	ued)						Method: I	ME-(AU)-[ENV]AN420
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
DUP2	SE183216.011	LB155627	24 Aug 2018	29 Aug 2018	07 Sep 2018	03 Sep 2018	13 Oct 2018	05 Sep 2018
PAH (Polynuclear Aromatic H	Hydrocarbons) in Soil						Method: I	ME-(AU)-[ENV]AN420
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
TP101 0.1	SE183216.001	LB155627	24 Aug 2018	29 Aug 2018	07 Sep 2018	03 Sep 2018	13 Oct 2018	04 Sep 2018
TP102 0.1	SE183216.002	LB155627	24 Aug 2018	29 Aug 2018	07 Sep 2018	03 Sep 2018	13 Oct 2018	04 Sep 2018
TP103 0.1	SE183216.003	LB155627	24 Aug 2018	29 Aug 2018	07 Sep 2018	03 Sep 2018	13 Oct 2018	04 Sep 2018
TP104 0.1	SE183216.004	LB155627	24 Aug 2018	29 Aug 2018	07 Sep 2018	03 Sep 2018	13 Oct 2018	04 Sep 2018
TP105 0.1	SE183216.005	LB155627	24 Aug 2018	29 Aug 2018	07 Sep 2018	03 Sep 2018	13 Oct 2018	04 Sep 2018
TP106 0.1	SE183216.006	LB155627	24 Aug 2018	29 Aug 2018	07 Sep 2018	03 Sep 2018	13 Oct 2018	05 Sep 2018
TP107 0.25	SE183216.007	LB155627	24 Aug 2018	29 Aug 2018	07 Sep 2018	03 Sep 2018	13 Oct 2018	05 Sep 2018
TP108 0.1	SE183216.008	LB155627	24 Aug 2018	29 Aug 2018	07 Sep 2018	03 Sep 2018	13 Oct 2018	05 Sep 2018
TP109 0.1	SE183216.009	LB155627	24 Aug 2018	29 Aug 2018	07 Sep 2018	03 Sep 2018	13 Oct 2018	05 Sep 2018
TP110 0.1	SE183216.010	LB155627	24 Aug 2018	29 Aug 2018	07 Sep 2018	03 Sep 2018	13 Oct 2018	05 Sep 2018
DUP2	SE183216.011	LB155627	24 Aug 2018	29 Aug 2018	07 Sep 2018	03 Sep 2018	13 Oct 2018	05 Sep 2018
PCBs in Soil							Method: I	ME-(AU)-[ENV]AN420
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
TP101 0.1	SE183216.001	LB155627	24 Aug 2018	29 Aug 2018	07 Sep 2018	03 Sep 2018	13 Oct 2018	04 Sep 2018
TP102 0.1	SE183216.002	LB155627	24 Aug 2018	29 Aug 2018	07 Sep 2018	03 Sep 2018	13 Oct 2018	04 Sep 2018
TP103 0.1	SE183216.003	LB155627	24 Aug 2018	29 Aug 2018	07 Sep 2018	03 Sep 2018	13 Oct 2018	04 Sep 2018
TP104 0.1	SE183216.004	LB155627	24 Aug 2018	29 Aug 2018	07 Sep 2018	03 Sep 2018	13 Oct 2018	04 Sep 2018
TP105 0.1	SE183216.005	LB155627	24 Aug 2018	29 Aug 2018	07 Sep 2018	03 Sep 2018	13 Oct 2018	04 Sep 2018
TP106 0.1	SE183216.006	LB155627	24 Aug 2018	29 Aug 2018	07 Sep 2018	03 Sep 2018	13 Oct 2018	04 Sep 2018
TP107 0.25	SE183216.007	LB155627	24 Aug 2018	29 Aug 2018	07 Sep 2018	03 Sep 2018	13 Oct 2018	04 Sep 2018
TP108 0.1	SE183216.008	LB155627	24 Aug 2018	29 Aug 2018	07 Sep 2018	03 Sep 2018	13 Oct 2018	04 Sep 2018
TP109 0.1	SE183216.009	LB155627	24 Aug 2018	29 Aug 2018	07 Sep 2018	03 Sep 2018	13 Oct 2018	04 Sep 2018
TP110 0.1	SE183216.010	LB155627	24 Aug 2018	29 Aug 2018	07 Sep 2018	03 Sep 2018	13 Oct 2018	04 Sep 2018
DUP2	SE183216.011	LB155627	24 Aug 2018	29 Aug 2018	07 Sep 2018	03 Sep 2018	13 Oct 2018	04 Sep 2018
pH in soil (1:5)							Method: I	ME-(AU)-[ENV]AN101
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
TP103 0.1	SE183216.003	LB155661	24 Aug 2018	29 Aug 2018	31 Aug 2018	03 Sep 2018†	04 Sep 2018	03 Sep 2018
Total Recoverable Elements	in Soil/Waste Solide/Mat	terials by ICPOES					Method: ME-(AL)-[ENV]AN040/AN320

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
TP101 0.1	SE183216.001	LB155629	24 Aug 2018	29 Aug 2018	20 Feb 2019	03 Sep 2018	20 Feb 2019	04 Sep 2018
TP102 0.1	SE183216.002	LB155629	24 Aug 2018	29 Aug 2018	20 Feb 2019	03 Sep 2018	20 Feb 2019	04 Sep 2018
TP103 0.1	SE183216.003	LB155629	24 Aug 2018	29 Aug 2018	20 Feb 2019	03 Sep 2018	20 Feb 2019	04 Sep 2018
TP104 0.1	SE183216.004	LB155629	24 Aug 2018	29 Aug 2018	20 Feb 2019	03 Sep 2018	20 Feb 2019	04 Sep 2018
TP105 0.1	SE183216.005	LB155629	24 Aug 2018	29 Aug 2018	20 Feb 2019	03 Sep 2018	20 Feb 2019	04 Sep 2018
TP106 0.1	SE183216.006	LB155629	24 Aug 2018	29 Aug 2018	20 Feb 2019	03 Sep 2018	20 Feb 2019	04 Sep 2018
TP107 0.25	SE183216.007	LB155629	24 Aug 2018	29 Aug 2018	20 Feb 2019	03 Sep 2018	20 Feb 2019	04 Sep 2018
TP108 0.1	SE183216.008	LB155629	24 Aug 2018	29 Aug 2018	20 Feb 2019	03 Sep 2018	20 Feb 2019	04 Sep 2018
TP109 0.1	SE183216.009	LB155629	24 Aug 2018	29 Aug 2018	20 Feb 2019	03 Sep 2018	20 Feb 2019	04 Sep 2018
TP110 0.1	SE183216.010	LB155629	24 Aug 2018	29 Aug 2018	20 Feb 2019	03 Sep 2018	20 Feb 2019	04 Sep 2018
DUP2	SE183216.011	LB155629	24 Aug 2018	29 Aug 2018	20 Feb 2019	03 Sep 2018	20 Feb 2019	04 Sep 2018
TRH (Total Recoverable Hydroca	rbons) in Soil						Method: N	/IE-(AU)-[ENV]AN403
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
TP101 0.1	SE183216.001	LB155627	24 Aug 2018	29 Aug 2018	07 Sep 2018	03 Sep 2018	13 Oct 2018	04 Sep 2018
TP102 0.1	05100010.000							04 Sep 2018
	SE183216.002	LB155627	24 Aug 2018	29 Aug 2018	07 Sep 2018	03 Sep 2018	13 Oct 2018	04 Sep 2018
TP103 0.1	SE183216.002 SE183216.003	LB155627 LB155627	24 Aug 2018 24 Aug 2018	29 Aug 2018 29 Aug 2018	07 Sep 2018 07 Sep 2018			
TP103 0.1 TP104 0.1					•	03 Sep 2018	13 Oct 2018	04 Sep 2018
	SE183216.003	LB155627	24 Aug 2018	29 Aug 2018	07 Sep 2018	03 Sep 2018 03 Sep 2018	13 Oct 2018 13 Oct 2018	04 Sep 2018 04 Sep 2018
TP104 0.1	SE183216.003 SE183216.004	LB155627 LB155627	24 Aug 2018 24 Aug 2018	29 Aug 2018 29 Aug 2018	07 Sep 2018 07 Sep 2018	03 Sep 2018 03 Sep 2018 03 Sep 2018	13 Oct 2018 13 Oct 2018 13 Oct 2018	04 Sep 2018 04 Sep 2018 04 Sep 2018
TP104 0.1 TP105 0.1	SE183216.003 SE183216.004 SE183216.005	LB155627 LB155627 LB155627	24 Aug 2018 24 Aug 2018 24 Aug 2018 24 Aug 2018	29 Aug 2018 29 Aug 2018 29 Aug 2018 29 Aug 2018	07 Sep 2018 07 Sep 2018 07 Sep 2018	03 Sep 2018 03 Sep 2018 03 Sep 2018 03 Sep 2018 03 Sep 2018	13 Oct 2018 13 Oct 2018 13 Oct 2018 13 Oct 2018 13 Oct 2018	04 Sep 2018 04 Sep 2018 04 Sep 2018 04 Sep 2018 04 Sep 2018
TP104 0.1 TP105 0.1 TP106 0.1	SE183216.003 SE183216.004 SE183216.005 SE183216.006	LB155627 LB155627 LB155627 LB155627	24 Aug 2018 24 Aug 2018 24 Aug 2018 24 Aug 2018 24 Aug 2018	29 Aug 2018 29 Aug 2018 29 Aug 2018 29 Aug 2018 29 Aug 2018	07 Sep 2018 07 Sep 2018 07 Sep 2018 07 Sep 2018 07 Sep 2018	03 Sep 2018 03 Sep 2018 03 Sep 2018 03 Sep 2018 03 Sep 2018 03 Sep 2018	13 Oct 2018 13 Oct 2018 13 Oct 2018 13 Oct 2018 13 Oct 2018 13 Oct 2018	04 Sep 2018 04 Sep 2018 04 Sep 2018 04 Sep 2018 04 Sep 2018 04 Sep 2018
TP104 0.1 TP105 0.1 TP106 0.1 TP107 0.25	SE183216.003 SE183216.004 SE183216.005 SE183216.006 SE183216.007	LB155627 LB155627 LB155627 LB155627 LB155627 LB155627	24 Aug 2018 24 Aug 2018 24 Aug 2018 24 Aug 2018 24 Aug 2018 24 Aug 2018	29 Aug 2018 29 Aug 2018 29 Aug 2018 29 Aug 2018 29 Aug 2018 29 Aug 2018	07 Sep 2018 07 Sep 2018 07 Sep 2018 07 Sep 2018 07 Sep 2018 07 Sep 2018	03 Sep 2018 03 Sep 2018 03 Sep 2018 03 Sep 2018 03 Sep 2018 03 Sep 2018 03 Sep 2018	13 Oct 2018 13 Oct 2018 13 Oct 2018 13 Oct 2018 13 Oct 2018 13 Oct 2018 13 Oct 2018	04 Sep 2018 04 Sep 2018 04 Sep 2018 04 Sep 2018 04 Sep 2018 04 Sep 2018 04 Sep 2018
TP104 0.1 TP105 0.1 TP106 0.1 TP107 0.25 TP108 0.1	SE183216.003 SE183216.004 SE183216.005 SE183216.006 SE183216.007 SE183216.008	LB155627 LB155627 LB155627 LB155627 LB155627 LB155627 LB155627	24 Aug 2018 24 Aug 2018 24 Aug 2018 24 Aug 2018 24 Aug 2018 24 Aug 2018 24 Aug 2018	29 Aug 2018 29 Aug 2018	07 Sep 2018 07 Sep 2018 07 Sep 2018 07 Sep 2018 07 Sep 2018 07 Sep 2018 07 Sep 2018	03 Sep 2018 03 Sep 2018	13 Oct 2018 13 Oct 2018	04 Sep 2018 04 Sep 2018

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
RINS 24.08.2018	SE183216.012	LB155528	24 Aug 2018	29 Aug 2018	31 Aug 2018	31 Aug 2018	10 Oct 2018	03 Sep 2018
/OC's in Soil							Method:	ME-(AU)-[ENV]AN4
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
TP101 0.1	SE183216.001	LB155626	24 Aug 2018	29 Aug 2018	07 Sep 2018	03 Sep 2018	13 Oct 2018	05 Sep 2018
TP102 0.1	SE183216.002	LB155626	24 Aug 2018	29 Aug 2018	07 Sep 2018	03 Sep 2018	13 Oct 2018	05 Sep 2018
TP103 0.1	SE183216.003	LB155626	24 Aug 2018	29 Aug 2018	07 Sep 2018	03 Sep 2018	13 Oct 2018	05 Sep 2018
TP104 0.1	SE183216.004	LB155626	24 Aug 2018	29 Aug 2018	07 Sep 2018	03 Sep 2018	13 Oct 2018	05 Sep 2018
TP105 0.1	SE183216.005	LB155626	24 Aug 2018	29 Aug 2018	07 Sep 2018	03 Sep 2018	13 Oct 2018	05 Sep 2018
TP106 0.1	SE183216.006	LB155626	24 Aug 2018	29 Aug 2018	07 Sep 2018	03 Sep 2018	13 Oct 2018	05 Sep 2018
TP107 0.25	SE183216.007	LB155626	24 Aug 2018	29 Aug 2018	07 Sep 2018	03 Sep 2018	13 Oct 2018	05 Sep 2018
TP108 0.1	SE183216.008	LB155626	24 Aug 2018	29 Aug 2018	07 Sep 2018	03 Sep 2018	13 Oct 2018	05 Sep 2018
TP109 0.1	SE183216.009	LB155626	24 Aug 2018	29 Aug 2018	07 Sep 2018	03 Sep 2018	13 Oct 2018	05 Sep 2018
TP110 0.1	SE183216.010	LB155626	24 Aug 2018	29 Aug 2018	07 Sep 2018	03 Sep 2018	13 Oct 2018	05 Sep 2018
DUP2	SE183216.011	LB155626	24 Aug 2018	29 Aug 2018	07 Sep 2018	03 Sep 2018	13 Oct 2018	05 Sep 2018
OCs in Water							Method:	ME-(AU)-[ENV]AN4
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
RINS 24.08.2018	SE183216.012	LB155745	24 Aug 2018	29 Aug 2018	31 Aug 2018	03 Sep 2018†	13 Oct 2018	05 Sep 2018

•								
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
TP101 0.1	SE183216.001	LB155626	24 Aug 2018	29 Aug 2018	07 Sep 2018	03 Sep 2018	13 Oct 2018	05 Sep 2018
TP102 0.1	SE183216.002	LB155626	24 Aug 2018	29 Aug 2018	07 Sep 2018	03 Sep 2018	13 Oct 2018	05 Sep 2018
TP103 0.1	SE183216.003	LB155626	24 Aug 2018	29 Aug 2018	07 Sep 2018	03 Sep 2018	13 Oct 2018	05 Sep 2018
TP104 0.1	SE183216.004	LB155626	24 Aug 2018	29 Aug 2018	07 Sep 2018	03 Sep 2018	13 Oct 2018	05 Sep 2018
TP105 0.1	SE183216.005	LB155626	24 Aug 2018	29 Aug 2018	07 Sep 2018	03 Sep 2018	13 Oct 2018	05 Sep 2018
TP106 0.1	SE183216.006	LB155626	24 Aug 2018	29 Aug 2018	07 Sep 2018	03 Sep 2018	13 Oct 2018	05 Sep 2018
TP107 0.25	SE183216.007	LB155626	24 Aug 2018	29 Aug 2018	07 Sep 2018	03 Sep 2018	13 Oct 2018	05 Sep 2018
TP108 0.1	SE183216.008	LB155626	24 Aug 2018	29 Aug 2018	07 Sep 2018	03 Sep 2018	13 Oct 2018	05 Sep 2018
TP109 0.1	SE183216.009	LB155626	24 Aug 2018	29 Aug 2018	07 Sep 2018	03 Sep 2018	13 Oct 2018	05 Sep 2018
TP110 0.1	SE183216.010	LB155626	24 Aug 2018	29 Aug 2018	07 Sep 2018	03 Sep 2018	13 Oct 2018	05 Sep 2018
DUP2	SE183216.011	LB155626	24 Aug 2018	29 Aug 2018	07 Sep 2018	03 Sep 2018	13 Oct 2018	05 Sep 2018
Volatile Petroleum Hydro	carbons in Water						Method:	ME-(AU)-[ENV]AN433
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
RINS 24.08.2018	SE183216.012	LB155745	24 Aug 2018	29 Aug 2018	31 Aug 2018	03 Sep 2018†	13 Oct 2018	05 Sep 2018

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

C Pesticides in Soil					(AU)-[ENV]A
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery
Tetrachloro-m-xylene (TCMX) (Surrogate)	TP101 0.1	SE183216.001	%	60 - 130%	105
	TP102 0.1	SE183216.002	%	60 - 130%	117
	TP103 0.1	SE183216.003	%	60 - 130%	121
	TP104 0.1	SE183216.004	%	60 - 130%	119
	TP105 0.1	SE183216.005	%	60 - 130%	123
	TP106 0.1	SE183216.006	%	60 - 130%	117
	TP107 0.25	SE183216.007	%	60 - 130%	120
	TP108 0.1	SE183216.008	%	60 - 130%	122
	TP109 0.1	SE183216.009	%	60 - 130%	113
	TP110 0.1	SE183216.010	%	60 - 130%	121
	DUP2	SE183216.011	%	60 - 130%	123
P Pesticides in Soil				Method: ME	(AU)-[ENV]A
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery
2-fluorobiphenyl (Surrogate)	TP101 0.1	SE183216.001	%	60 - 130%	88
	TP102 0.1	SE183216.002	%	60 - 130%	86
	TP103 0.1	SE183216.003	%	60 - 130%	82
	TP104 0.1	SE183216.004	%	60 - 130%	86
	TP105 0.1	SE183216.005	%	60 - 130%	90
	TP106 0.1	SE183216.005	%		
				60 - 130%	86
	TP107 0.25	SE183216.007	%	60 - 130%	88
	TP108 0.1	SE183216.008	%	60 - 130%	88
	TP109 0.1	SE183216.009	%	60 - 130%	90
	TP110 0.1	SE183216.010	%	60 - 130%	86
	DUP2	SE183216.011	%	60 - 130%	92
14-p-terphenyl (Surrogate)	TP101 0.1	SE183216.001	%	60 - 130%	102
	TP102 0.1	SE183216.002	%	60 - 130%	90
	TP103 0.1	SE183216.003	%	60 - 130%	98
	TP104 0.1	SE183216.004	%	60 - 130%	94
	TP105 0.1	SE183216.005	%	60 - 130%	96
	TP106 0.1	SE183216.006	%	60 - 130%	100
	TP107 0.25	SE183216.007	%	60 - 130%	98
	TP108 0.1	SE183216.008	%	60 - 130%	96
	TP109 0.1	SE183216.009	%	60 - 130%	102
	TP110 0.1	SE183216.010	%	60 - 130%	100
	DUP2	SE183216.011	%	60 - 130%	96
AH (Polynuclear Aromatic Hydrocarbons) in Soil				Method: ME	(AU)-[ENV]
arameter	Sample Name	Sample Number	Units	Criteria	Recover
2-fluorobiphenyl (Surrogate)	TP101 0.1	SE183216.001	%	70 - 130%	88
	TP102 0.1	SE183216.002	%	70 - 130%	86
	TP103 0.1	SE183216.003	%	70 - 130%	82
	TP104 0.1	SE183216.004	%	70 - 130%	86
	TP105 0.1	SE183216.005	%	70 - 130%	90
			%		
	TP106 0.1	SE183216.006		70 - 130%	86
	TP107 0.25	SE183216.007	%	70 - 130%	88
	TP108 0.1	SE183216.008	%	70 - 130%	88
	TP109 0.1	SE183216.009	%	70 - 130%	90
	TP110 0.1	SE183216.010	%	70 - 130%	86
	DUP2	SE183216.011	%	70 - 130%	92
14-p-terphenyl (Surrogate)	TP101 0.1	SE183216.001	%	70 - 130%	102
	TP102 0.1	SE183216.002	%	70 - 130%	90
	TP103 0.1	SE183216.003	%	70 - 130%	98
	TP104 0.1	SE183216.004	%	70 - 130%	94
	TP105 0.1	SE183216.005	%	70 - 130%	96
	TP106 0.1	SE183216.006	%	70 - 130%	100
	TP107 0.25	SE183216.007	%	70 - 130%	98
	TP108 0.1	SE183216.008	%	70 - 130%	96
	TP109 0.1	SE183216.009	%	70 - 130%	102
	TP110 0.1	SE183216.010	%	70 - 130%	100
	DUP2	SE183216.011	%	70 - 130%	96

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

PAH (Polynuclear Aromatic Hydrocarbons) in Soil (continued)				Method: MI	E-(AU)-[ENV]AN
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery ^o
d5-nitrobenzene (Surrogate)	TP102 0.1	SE183216.002	%	70 - 130%	82
	TP103 0.1	SE183216.003	%	70 - 130%	92
	TP104 0.1	SE183216.004	%	70 - 130%	84
	TP105 0.1	SE183216.005	%	70 - 130%	86
	TP106 0.1	SE183216.006	%	70 - 130%	80
	TP107 0.25	SE183216.007	%	70 - 130%	84
	TP108 0.1	SE183216.008	%	70 - 130%	84
	TP109 0.1	SE183216.009	%	70 - 130%	82
	TP110 0.1	SE183216.010	%	70 - 130%	82
	DUP2	SE183216.010	%	70 - 130%	82
	0012	SE103210.011	78		
PCBs in Soil				Method: MI	E-(AU)-[ENV]A
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery
Tetrachloro-m-xylene (TCMX) (Surrogate)	TP101 0.1	SE183216.001	%	60 - 130%	105
	TP102 0.1	SE183216.002	%	60 - 130%	117
	TP103 0.1	SE183216.003	%	60 - 130%	121
	TP104 0.1	SE183216.004	%	60 - 130%	119
	TP105 0.1	SE183216.005	%	60 - 130%	123
	TP106 0.1	SE183216.006	%	60 - 130%	117
	TP107 0.25	SE183216.007	%	60 - 130%	120
	TP107 0.25	SE183216.007	%	60 - 130%	120
		SE183216.009			
	TP109 0.1		%	60 - 130%	113
	TP110 0.1	SE183216.010	%	60 - 130%	121
	DUP2	SE183216.011	%	60 - 130%	123
OC's in Soil				Method: MI	E-(AU)-[ENV]A
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery
Bromofluorobenzene (Surrogate)	TP101 0.1	SE183216.001	%	60 - 130%	80
	TP102 0.1	SE183216.002	%	60 - 130%	77
	TP103 0.1	SE183216.003	%	60 - 130%	75
	TP104 0.1	SE183216.004	%	60 - 130%	74
	TP105 0.1	SE183216.005	%	60 - 130%	74
	TP106 0.1	SE183216.006	%	60 - 130%	75
	TP107 0.25	SE183216.007	%	60 - 130%	75
	TP108 0.1	SE183216.008	%	60 - 130%	74
	TP109 0.1	SE183216.009	%	60 - 130%	82
	TP110 0.1	SE183216.010	%	60 - 130%	75
	DUP2	SE183216.011	%	60 - 130%	79
d4-1,2-dichloroethane (Surrogate)	TP101 0.1	SE183216.001	%	60 - 130%	98
	TP102 0.1	SE183216.002	%	60 - 130%	99
	TP103 0.1	SE183216.003	%	60 - 130%	79
	TP104 0.1	SE183216.004	%	60 - 130%	95
	TP105 0.1	SE183216.005	%	60 - 130%	86
	TP106 0.1	SE183216.006	%	60 - 130%	93
	TP107 0.25	SE183216.007	%	60 - 130%	92
	TP108 0.1	SE183216.008	%	60 - 130%	93
	TP109 0.1	SE183216.009	%	60 - 130%	89
	TP110 0.1	SE183216.009	%	60 - 130%	82
-10 to have a (0 mm moto)	DUP2	SE183216.011	%	60 - 130%	85
d8-toluene (Surrogate)	TP101 0.1	SE183216.001	%	60 - 130%	80
	TP102 0.1	SE183216.002	%	60 - 130%	90
	TP103 0.1	SE183216.003	%	60 - 130%	70
	TP104 0.1	SE183216.004	%	60 - 130%	79
	TP105 0.1	SE183216.005	%	60 - 130%	76
	TP106 0.1	SE183216.006	%	60 - 130%	84
	TD 107 0 05	SE183216.007	%	60 - 130%	82
	TP107 0.25		8/	60 - 130%	76
	TP107 0.25 TP108 0.1	SE183216.008	%		
					80
	TP108 0.1 TP109 0.1	SE183216.009	%	60 - 130%	80 73
	TP108 0.1 TP109 0.1 TP110 0.1	SE183216.009 SE183216.010	%	60 - 130% 60 - 130%	73
Dihomefuoromethano (Suzegata)	TP108 0.1 TP109 0.1 TP110 0.1 DUP2	SE183216.009 SE183216.010 SE183216.011	% % %	60 - 130% 60 - 130% 60 - 130%	73 76
Dibromofluoromethane (Surrogate)	TP108 0.1 TP109 0.1 TP110 0.1	SE183216.009 SE183216.010	%	60 - 130% 60 - 130%	73

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

/OC's in Soil (continued)				Method: ME	-(AU)-[ENV]AN
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Dibromofluoromethane (Surrogate)	TP103 0.1	SE183216.003	%	60 - 130%	74
	TP104 0.1	SE183216.004	%	60 - 130%	81
	TP105 0.1	SE183216.005	%	60 - 130%	77
	TP106 0.1	SE183216.006	%	60 - 130%	86
	TP107 0.25	SE183216.007	%	60 - 130%	84
	TP108 0.1	SE183216.008	%	60 - 130%	79
	TP109 0.1	SE183216.009	%	60 - 130%	84
	TP110 0.1	SE183216.010	%	60 - 130%	77
	DUP2	SE183216.011	%	60 - 130%	79
/OCs in Water					-(AU)-[ENV]AN
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Bromofluorobenzene (Surrogate)	RINS 24.08.2018	SE183216.012	%	40 - 130%	85
d4-1,2-dichloroethane (Surrogate)	RINS 24.08.2018	SE183216.012	%	40 - 130%	114
d8-toluene (Surrogate)	RINS 24.08.2018	SE183216.012	%	40 - 130%	101
			%		
Dibromofluoromethane (Surrogate)	RINS 24.08.2018	SE183216.012	70	40 - 130%	101
olatile Petroleum Hydrocarbons in Soil				Method: ME	-(AU)-[ENV]AN
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery 9
Bromofluorobenzene (Surrogate)	TP101 0.1	SE183216.001	%	60 - 130%	80
	TP102 0.1	SE183216.002	%	60 - 130%	77
	TP103 0.1	SE183216.003	%	60 - 130%	75
	TP104 0.1	SE183216.004	%	60 - 130%	74
	TP105 0.1	SE183216.005	%	60 - 130%	78
	TP106 0.1	SE183216.006	%	60 - 130%	75
	TP107 0.25	SE183216.007	%	60 - 130%	75
	TP108 0.1	SE183216.008	%	60 - 130%	74
	TP109 0.1	SE183216.009	%	60 - 130%	82
	TP110 0.1	SE183216.003	%	60 - 130%	75
	DUP2	SE183216.011	%	60 - 130%	79
d4-1,2-dichloroethane (Surrogate)	TP101 0.1	SE183216.001	%	60 - 130%	98
	TP102 0.1	SE183216.002	%	60 - 130%	99
	TP103 0.1	SE183216.003	%	60 - 130%	79
	TP104 0.1	SE183216.004	%	60 - 130%	95
	TP105 0.1	SE183216.005	%	60 - 130%	86
	TP106 0.1	SE183216.006	%	60 - 130%	93
	TP107 0.25	SE183216.007	%	60 - 130%	92
	TP108 0.1	SE183216.008	%	60 - 130%	93
	TP109 0.1	SE183216.009	%	60 - 130%	89
	TP110 0.1	SE183216.010	%	60 - 130%	82
	DUP2	SE183216.011	%	60 - 130%	85
d8-toluene (Surrogate)	TP101 0.1	SE183216.001	%	60 - 130%	80
	TP102 0.1	SE183216.002	%	60 - 130%	90
	TP103 0.1	SE183216.003	%	60 - 130%	70
	TP104 0.1	SE183216.004	%	60 - 130%	79
	TP105 0.1	SE183216.005	%	60 - 130%	76
	TP106 0.1	SE183216.006	%	60 - 130%	84
	TP107 0.25	SE183216.007	%	60 - 130%	82
	TP108 0.1	SE183216.008	%	60 - 130%	76
	TP109 0.1	SE183216.009	%	60 - 130%	80
	TP110 0.1	SE183216.003	%	60 - 130%	73
	DUP2	SE183216.011	%	60 - 130%	76
Dibromofluoromethane (Surrogate)	TP101 0.1	SE183216.001	%	60 - 130%	85
	TP102 0.1	SE183216.002	%	60 - 130%	93
	TP103 0.1	SE183216.003	%	60 - 130%	74
	TP104 0.1	SE183216.004	%	60 - 130%	81
	TP105 0.1	SE183216.005	%	60 - 130%	77
	TP106 0.1	SE183216.006	%	60 - 130%	86
	TP107 0.25	SE183216.007	%	60 - 130%	84
	TP108 0.1	SE183216.008	%	60 - 130%	79
	TP109 0.1	SE183216.009	%	60 - 130%	84
	TP110 0.1	SE183216.010	%	60 - 130%	77

Page 7 of 23

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Volatile Petroleum Hydrocarbons in Soil (continued)				Method: M	E-(AU)-[ENV]AN433
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Dibromofluoromethane (Surrogate)	DUP2	SE183216.011	%	60 - 130%	79
Volatile Petroleum Hydrocarbons in Water Method: ME-(AU)-[ENV					
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Bromofluorobenzene (Surrogate)	RINS 24.08.2018	SE183216.012	%	40 - 130%	85
d4-1,2-dichloroethane (Surrogate)	RINS 24.08.2018	SE183216.012	%	60 - 130%	114
d8-toluene (Surrogate)	RINS 24.08.2018	SE183216.012	%	40 - 130%	101
Dibromofluoromethane (Surrogate)	RINS 24.08.2018	SE183216.012	%	40 - 130%	101

METHOD BLANKS

SE183216 R0

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Exchangeable Cations and Cation Exchange Capacity (CEC/ESP/SAR)

Exchangeable Cations and Cation Excha	ange Capacity (CEC/ESP/SAR)		Metho	od: ME-(AU)-[ENV]AN122
Sample Number	Parameter	Units	LOR	Result
LB155649.001	Exchangeable Sodium, Na	mg/kg	2	0
	Exchangeable Potassium, K	mg/kg	2	0
	Exchangeable Calcium, Ca	mg/kg	2	0
	Exchangeable Magnesium, Mg	mg/kg	2	0
Mercury in Soil			Metho	od: ME-(AU)-[ENV]AN312
Sample Number	Parameter	Units	LOR	Result
LB155630.001	Mercury	mg/kg	0.05	<0.05

OC Pesticides in Soil

OC Pesticides in Soil			М	lethod: ME-(AU)-[ENV]AN42
Sample Number	Parameter	Units	LOR	Result
LB155627.001	Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1
	Alpha BHC	mg/kg	0.1	<0.1
	Lindane	mg/kg	0.1	<0.1
	Heptachlor	mg/kg	0.1	<0.1
	Aldrin	mg/kg	0.1	<0.1
	Beta BHC	mg/kg	0.1	<0.1
	Delta BHC	mg/kg	0.1	<0.1
	Heptachlor epoxide	mg/kg	0.1	<0.1
	Alpha Endosulfan	mg/kg	0.2	<0.2
	Gamma Chlordane	mg/kg	0.1	<0.1
	Alpha Chlordane	mg/kg	0.1	<0.1
	p,p'-DDE	mg/kg	0.1	<0.1
	Dieldrin	mg/kg	0.2	<0.2
	Endrin	mg/kg	0.2	<0.2
	Beta Endosulfan	mg/kg	0.2	<0.2
	p,p'-DDD	mg/kg	0.1	<0.1
	p,p'-DDT	mg/kg	0.1	<0.1
	Endosulfan sulphate	mg/kg	0.1	<0.1
	Endrin Aldehyde	mg/kg	0.1	<0.1
	Methoxychlor	mg/kg	0.1	<0.1
	Endrin Ketone	mg/kg	0.1	<0.1
	Isodrin	mg/kg	0.1	<0.1
	Mirex	mg/kg	0.1	<0.1
Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	%	-	95
OP Pesticides in Soil			M	lethod: ME-(AU)-[ENV]AN42

			Moun	
Sample Number	Parameter	Units	LOR	Result
.B155627.001	Dichlorvos	mg/kg	0.5	<0.5
	Dimethoate	mg/kg	0.5	<0.5
	Diazinon (Dimpylate)	mg/kg	0.5	<0.5
	Fenitrothion	mg/kg	0.2	<0.2
	Malathion	mg/kg	0.2	<0.2
	Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2
	Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2
	Bromophos Ethyl	mg/kg	0.2	<0.2
	Methidathion	mg/kg	0.5	<0.5
	Ethion	mg/kg	0.2	<0.2
	Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2
Surrogates	2-fluorobiphenyl (Surrogate)	%	-	94
	d14-p-terphenyl (Surrogate)	%	-	98

PAH (Polynuclear Aromatic Hydrocarbons) in Soil

Sample Number	Parameter	Units	LOR	Result
LB155627.001	Naphthalene	mg/kg	0.1	<0.1
	2-methylnaphthalene	mg/kg	0.1	<0.1
	1-methylnaphthalene	mg/kg	0.1	<0.1
	Acenaphthylene	mg/kg	0.1	<0.1
	Acenaphthene	mg/kg	0.1	<0.1
	Fluorene	mg/kg	0.1	<0.1
	Phenanthrene	mg/kg	0.1	<0.1

METHOD BLANKS

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

	omatic Hydrocarbons) in Soll (co				od: ME-(AU)-[ENV]AN4
Sample Number		Parameter	Units	LOR	Result
LB155627.001		Anthracene	mg/kg	0.1	<0.1
		Fluoranthene	mg/kg	0.1	<0.1
		Pyrene	mg/kg	0.1	<0.1
		Benzo(a)anthracene	mg/kg	0.1	<0.1
		Chrysene	mg/kg	0.1	<0.1
		Benzo(a)pyrene	mg/kg	0.1	<0.1
		Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1
				0.1	<0.1
		Dibenzo(ah)anthracene	mg/kg	· · · · · · · · · · · · · · · · · · ·	
		Benzo(ghi)perylene	mg/kg	0.1	<0.1
		Total PAH (18)	mg/kg	0.8	<0.8
	Surrogates	d5-nitrobenzene (Surrogate)	%	-	84
		2-fluorobiphenyl (Surrogate)	%	-	94
		d14-p-terphenyl (Surrogate)	%	-	98
PCBs in Soil				Metho	d: ME-(AU)-[ENV]AN
Sample Number		Parameter	Units	LOR	Result
LB155627.001		Arochlor 1016	mg/kg	0.2	<0.2
		Arochlor 1221	mg/kg	0.2	<0.2
		Arochlor 1232	mg/kg	0.2	<0.2
		Arochlor 1242	mg/kg	0.2	<0.2
		Arochlor 1248	mg/kg	0.2	<0.2
		Arochlor 1254	mg/kg	0.2	<0.2
		Arochlor 1260	mg/kg	0.2	<0.2
		Arochlor 1262	mg/kg	0.2	<0.2
		Arochlor 1268	mg/kg	0.2	<0.2
		Total PCBs (Arochlors)	mg/kg	1	<1
	Surregates	Tetrachloro-m-xylene (TCMX) (Surrogate)	%	-	95
	Surrogates		/0		
Total Recoverable Ele	ements in Soil/Waste Solids/Ma	terials by ICPOES		Method: ME-	(AU)-[ENV]AN040/AN3
Sample Number		Parameter	Units	LOR	Result
LB155629.001		Arsenic, As	mg/kg	1	<1
		Cadmium, Cd	mg/kg	0.3	<0.3
		Chromium, Cr	mg/kg	0.3	<0.3
		Copper, Cu	mg/kg	0.5	<0.5
		Nickel, Ni	mg/kg	0.5	<0.5
		Lead, Pb	mg/kg	1	<1
		Zinc, Zn	mg/kg	2	<2.0
RH (Total Recoveral	ble Hydrocarbons) in Soil			Metho	d: ME-(AU)-[ENV]AN
Sample Number		Parameter	Units	LOR	Result
LB155627.001		TRH C10-C14		20	<20
LB155027.001			mg/kg		
		TRH C15-C28	mg/kg	45	<45
		TRH C29-C36	mg/kg	45	<45
		TRH C37-C40	mg/kg	100	<100
		TRH C10-C36 Total	mg/kg	110	<110
RH (Total Recoveral	ble Hydrocarbons) in Water			Metho	d: ME-(AU)-[ENV]AN
		Parameter	Units	1.00	
Sample Number		Parameter	Units	LOR	Result
LB155528.001		TRH C10-C14	μg/L	50	<50
		TRH C15-C28	µg/L	200	<200
		TRH C29-C36	μg/L	200	<200
		TRH C37-C40	μg/L	200	<200
/OC's in Soil				Metho	d: ME-(AU)-[ENV]AN
Sample Number		Parameter	Units	LOR	Result
LB155626.001	Monocyclic Aromatic	Benzene		0.1	<0.1
LD 100020.001	Monocyclic Aromatic		mg/kg		
	Hydrocarbons	Toluene	mg/kg	0.1	<0.1
		Ethylbenzene	mg/kg	0.1	<0.1
		m/p-xylene	mg/kg	0.2	<0.2
		o-xylene	mg/kg	0.1	<0.1
		e Ajone			
	Polycyclic VOCs	Naphthalene	mg/kg	0.1	<0.1
	Polycyclic VOCs Surrogates				<0.1 74

METHOD BLANKS

SE183216 R0

Method: ME-(AU)-[ENV]AN433

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

VOC's in Soil (continued)

•	· · · · · · · · · · · · · · · · · · ·				· · · ·
Sample Number		Parameter	Units	LOR	Result
LB155626.001	Surrogates	d8-toluene (Surrogate)	%	-	106
		Bromofluorobenzene (Surrogate)	%	-	74
	Totals	Total BTEX	mg/kg	0.6	<0.6
VOCs in Water				Meth	od: ME-(AU)-[ENV]AN43
Sample Number		Parameter	Units	LOR	Result
LB155745.001	Monocyclic Aromatic	Benzene	µg/L	0.5	<0.5
	Hydrocarbons	Toluene	µg/L	0.5	<0.5
		Ethylbenzene	µg/L	0.5	<0.5
		m/p-xylene	µg/L	1	<1
		o-xylene	µg/L	0.5	<0.5
	Polycyclic VOCs	Naphthalene	µg/L	0.5	<0.5
	Surrogates	Dibromofluoromethane (Surrogate)	%	-	87
		d4-1,2-dichloroethane (Surrogate)	%	-	96
		d8-toluene (Surrogate)	%	-	98
		Bromofluorobenzene (Surrogate)	%	-	90
Volatile Petroleum Hy	drocarbons in Soil			Meth	od: ME-(AU)-[ENV]AN43
Sample Number		Parameter	Units	LOR	Result
LB155626.001		TRH C6-C9	mg/kg	20	<20
	Surrogates	Dibromofluoromethane (Surrogate)	%	-	74
		d4-1,2-dichloroethane (Surrogate)	%	-	72
		d8-toluene (Surrogate)	%	-	106
Volatile Petroleum Hy	drocarbons in Water			Meth	od: ME-(AU)-[ENV]AN43
Sample Number		Parameter	Units	LOR	Result
LB155745.001		TRH C6-C9	µg/L	40	<40
	Surrogates	Dibromofluoromethane (Surrogate)	%	-	87
		d4-1,2-dichloroethane (Surrogate)	%	-	96
		d8-toluene (Surrogate)	%	-	98
		Bromofluorobenzene (Surrogate)	%	-	90

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Mercury in Soil						Meth	od: ME-(AU)-	ENVJAN312
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE183216.003	LB155630.014	Mercury	mg/kg	0.05	<0.05	<0.05	200	0
SE183216.011	LB155630.023	Mercury	mg/kg	0.05	<0.05	<0.05	200	0

Moisture Content

Moisture Content Method: ME-(AU)-[E							ENVJAN002	
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE183216.003	LB155628.011	% Moisture	%w/w	0.5	6.5	6.2	46	5
SE183216.011	LB155628.020	% Moisture	%w/w	0.5	8.0	8.6	42	7

OC Pesticides in Soil

									(ENVJAN
riginal	Duplicate		Parameter	Units	LOR	Original		Criteria %	
E183216.001	LB155627.028		Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	0	200	0
			Alpha BHC	mg/kg	0.1	<0.1	0	200	0
			Lindane	mg/kg	0.1	<0.1	0	200	0
			Heptachlor	mg/kg	0.1	<0.1	0	200	0
			Aldrin	mg/kg	0.1	<0.1	0	200	0
			Beta BHC	mg/kg	0.1	<0.1	0	200	0
			Delta BHC	mg/kg	0.1	<0.1	0	200	0
			Heptachlor epoxide	mg/kg	0.1	<0.1	0	200	0
			o,p'-DDE	mg/kg	0.1	<0.1	0	200	0
			Alpha Endosulfan	mg/kg	0.2	<0.2	0	200	0
			Gamma Chlordane	mg/kg	0.1	<0.1	0	200	0
			Alpha Chlordane	mg/kg	0.1	<0.1	0	200	0
			trans-Nonachlor	mg/kg	0.1	<0.1	0	200	0
			p,p'-DDE	mg/kg	0.1	<0.1	0	200	0
			Dieldrin	mg/kg	0.2	<0.2	0	200	0
			Endrin	mg/kg	0.2	<0.2	0	200	0
			o,p'-DDD	mg/kg	0.1	<0.1	0	200	0
			o,p'-DDT	mg/kg	0.1	<0.1	0	200	0
			Beta Endosulfan	mg/kg	0.2	<0.2	0	200	0
			p,p'-DDD	mg/kg	0.1	<0.1	0	200	0
			p,p'-DDT	mg/kg	0.1	<0.1	0	200	0
			Endosulfan sulphate	mg/kg	0.1	<0.1	0	200	0
			Endrin Aldehyde	mg/kg	0.1	<0.1	0	200	0
			Methoxychlor	mg/kg	0.1	<0.1	0	200	0
			Endrin Ketone	mg/kg	0.1	<0.1	0	200	0
			Isodrin	mg/kg	0.1	<0.1	0	200	0
			Mirex	mg/kg	0.1	<0.1	0	200	0
			Total CLP OC Pesticides	mg/kg	1	<1	0	200	0
		Surragataa			-		0.187	30	17
183216.011	LB155627.023	Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	0.1	0.16	<0.1	200	0
183216.011	LB155627.023		Hexachlorobenzene (HCB)	mg/kg					
			Alpha BHC	mg/kg	0.1	<0.1	<0.1	200	0
			Lindane	mg/kg	0.1	<0.1	<0.1	200	0
			Heptachlor	mg/kg	0.1	<0.1	<0.1	200	0
			Aldrin	mg/kg	0.1	<0.1	<0.1	200	0
			Beta BHC	mg/kg	0.1	<0.1	<0.1	200	0
			Delta BHC	mg/kg	0.1	<0.1	<0.1	200	0
			Heptachlor epoxide	mg/kg	0.1	<0.1	<0.1	200	0
			o,p'-DDE	mg/kg	0.1	<0.1	<0.1	200	0
			Alpha Endosulfan	mg/kg	0.2	<0.2	<0.2	200	0
			Gamma Chlordane	mg/kg	0.1	<0.1	<0.1	200	0
			Alpha Chlordane	mg/kg	0.1	<0.1	<0.1	200	0
			trans-Nonachlor	mg/kg	0.1	<0.1	<0.1	200	0
			p,p'-DDE	mg/kg	0.1	<0.1	<0.1	200	0
			Dieldrin	mg/kg	0.2	<0.2	<0.2	200	0
			Endrin	mg/kg	0.2	<0.2	<0.2	200	0
			o,p'-DDD	mg/kg	0.1	<0.1	<0.1	200	0
			o,p'-DDT	mg/kg	0.1	<0.1	<0.1	200	0
			Beta Endosulfan	mg/kg	0.2	<0.2	<0.2	200	0
			p,p'-DDD		0.2	<0.1	<0.1	200	0

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

OC Pesticides in S			Deveneder		LOD	Onimierat		od: ME-(AU)-	
Original	Duplicate		Parameter	Units	LOR	Original		Criteria %	
SE183216.011	LB155627.023		p,p'-DDT	mg/kg	0.1	<0.1	<0.1	200	0
			Endosulfan sulphate	mg/kg	0.1	<0.1	<0.1	200	0
			Endrin Aldehyde	mg/kg	0.1	<0.1	<0.1	200	0
			Methoxychlor	mg/kg	0.1	<0.1	<0.1	200	0
			Endrin Ketone	mg/kg	0.1	<0.1	<0.1	200	0
			Isodrin	mg/kg	0.1	<0.1	<0.1	200	
			Mirex	mg/kg	0.1	<0.1	<0.1	200	0
			Total CLP OC Pesticides	mg/kg	- 1	<1 0.19	<1 0.19	200 30	0
		Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0.19			
OP Pesticides in S	Soil						Metho	od: ME-(AU)-	[ENV]AN
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD
SE183216.002	LB155627.026		Dichlorvos	mg/kg	0.5	<0.5	0	200	0
			Dimethoate	mg/kg	0.5	<0.5	0	200	0
			Diazinon (Dimpylate)	mg/kg	0.5	<0.5	0	200	0
			Fenitrothion	mg/kg	0.2	<0.2	0	200	0
			Malathion	mg/kg	0.2	<0.2	0	200	0
			Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2	0	200	0
			Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	0	200	0
			Bromophos Ethyl	mg/kg	0.2	<0.2	0	200	0
			Methidathion	mg/kg	0.5	<0.5	0	200	0
			Ethion	mg/kg	0.2	<0.2	0	200	0
			Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	0	200	0
			Total OP Pesticides*	mg/kg	1.7	<1.7	0	200	0
		Surrogates	2-fluorobiphenyl (Surrogate)	mg/kg	-	0.4	0.43	30	0
			d14-p-terphenyl (Surrogate)	mg/kg	-	0.5	0.45	30	0
SE183216.011	LB155627.023		Dichlorvos	mg/kg	0.5	<0.5	<0.5	200	0
			Dimethoate	mg/kg	0.5	<0.5	<0.5	200	0
			Diazinon (Dimpylate)	mg/kg	0.5	<0.5	<0.5	200	0
			Fenitrothion	mg/kg	0.2	<0.2	<0.2	200	0
			Malathion	mg/kg	0.2	<0.2	<0.2	200	0
			Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2	<0.2	200	0
			Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	<0.2	200	0
			Bromophos Ethyl	mg/kg	0.2	<0.2	<0.2	200	0
			Methidathion	mg/kg	0.5	<0.5	<0.5	200	0
			Ethion	mg/kg	0.2	<0.2	<0.2	200	0
			Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	<0.2	200	0
			Total OP Pesticides*	mg/kg	1.7	<1.7	<1.7	200	0
		Surrogates	2-fluorobiphenyl (Surrogate)	mg/kg	-	0.5	0.5	30	2
		ounogates	d14-p-terphenyl (Surrogate)	mg/kg	-	0.5	0.5	30	4
	A					0.0			
	Aromatic Hydrocarb	ons) in Soli			1.00			od: ME-(AU)-	
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD
SE183216.002	LB155627.026		Naphthalene	mg/kg	0.1	<0.1	0	200	0
			2-methylnaphthalene	mg/kg	0.1	<0.1	0	200	0
			1-methylnaphthalene	mg/kg	0.1	<0.1	0	200	0
			Acenaphthylene	mg/kg	0.1	<0.1	0	200	0
			Acenaphthene	mg/kg	0.1	<0.1	0	200	0
			Fluorene	mg/kg	0.1	<0.1	0	200	0
			Phenanthrene	mg/kg	0.1	<0.1	0.02	200	0
			Anthracene	mg/kg	0.1	<0.1	0.02	200	0
			Fluoranthene	mg/kg	0.1	<0.1	0	200	0
			Pyrene	mg/kg	0.1	<0.1	0	200	0
			Benzo(a)anthracene	mg/kg	0.1	<0.1	0	200	0
			Chrysene	mg/kg	0.1	<0.1	0	200	0
			Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	0	200	0
			Benzo(k)fluoranthene	mg/kg	0.1	<0.1	0	200	0
			Benzo(a)pyrene	mg/kg	0.1	<0.1	0.01	200	0
			Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	0	200	0
			Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	0	200	0
			Ponze(abi)non/ono		0.1	-0.1	0	200	0

Benzo(ghi)perylene

Carcinogenic PAHs, BaP TEQ <LOR=0

0

0.1

0.2

mg/kg

mg/kg

<0.1

<0.2

0

0

200

200

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Driginal	Duplicate		Parameter	Units	LOR	Original	Dup <u>licate</u>	Criteria %	RPD
E183216.002	LB155627.026		Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>mg/kg</td><td>0.3</td><td><0.3</td><td>0.242</td><td>134</td><td>0</td></lor=lor<>	mg/kg	0.3	<0.3	0.242	134	0
100210.002	20100021.020		Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>mg/kg</td><td>0.2</td><td><0.2</td><td>0.121</td><td>175</td><td>0</td></lor=lor>	mg/kg	0.2	<0.2	0.121	175	0
			Total PAH (18)	mg/kg	0.8	<0.8	0.121	200	
		Surrogates	d5-nitrobenzene (Surrogate)	mg/kg	- 0.0	0.4	0.4	30	
		Sunogales	2-fluorobiphenyl (Surrogate)	mg/kg		0.4	0.43	30	
			d14-p-terphenyl (Surrogate)	mg/kg		0.4	0.45	30	
183216.011	LB155627.023				0.1			200	
103210.011	LB155027.025		Naphthalene	mg/kg		<0.1	<0.1		
			2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	200	
			1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	200	
			Acenaphthylene	mg/kg	0.1	<0.1	<0.1	200	
			Acenaphthene	mg/kg	0.1	<0.1	<0.1	200	
			Fluorene	mg/kg	0.1	<0.1	<0.1	200	
			Phenanthrene	mg/kg	0.1	<0.1	<0.1	200	
			Anthracene	mg/kg	0.1	<0.1	<0.1	200	
			Fluoranthene	mg/kg	0.1	<0.1	<0.1	200	
			Pyrene	mg/kg	0.1	<0.1	<0.1	200	
			Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1	200	
			Chrysene	mg/kg	0.1	<0.1	<0.1	200	
			Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	<0.1	200	
			Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1	200	
			Benzo(a)pyrene	mg/kg	0.1	<0.1	<0.1	200	
			Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1	200	
			Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	200	
			Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1	200	
			Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>mg/kg</td><td>0.2</td><td><0.2</td><td><0.2</td><td>200</td><td></td></lor=0<>	mg/kg	0.2	<0.2	<0.2	200	
			Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>mg/kg</td><td>0.3</td><td><0.3</td><td><0.3</td><td>134</td><td></td></lor=lor<>	mg/kg	0.3	<0.3	<0.3	134	
			Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>mg/kg</td><td>0.2</td><td><0.2</td><td><0.2</td><td>175</td><td></td></lor=lor>	mg/kg	0.2	<0.2	<0.2	175	
			Total PAH (18)	mg/kg	0.8	<0.8	<0.8	200	
		Surrogates	d5-nitrobenzene (Surrogate)	mg/kg	-	0.4	0.4	30	
		ounogates	2-fluorobiphenyl (Surrogate)	mg/kg		0.5	0.5	30	
			d14-p-terphenyl (Surrogate)	mg/kg		0.5	0.5	30	
				ing/kg		0.5			
Bs in Soil							Meth	od: ME-(AU)-	(ENV
riginal	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RP
E183216.001	LB155627.025		Arochlor 1016	mg/kg	0.2	<0.2	0	200	
			Arochlor 1221	mg/kg	0.2	<0.2	0	200	
			Arochlor 1232	mg/kg	0.2	<0.2	0	200	
			Arochlor 1242	mg/kg	0.2	<0.2	0	200	
			Arochlor 1248	mg/kg	0.2	<0.2	0	200	
			Arochlor 1254	mg/kg	0.2	<0.2	0	200	
			Arochlor 1260	mg/kg	0.2	<0.2	0	200	
			Arochlor 1262	mg/kg	0.2	<0.2	0	200	
			Arochlor 1268	mg/kg	0.2	<0.2	0	200	
			Total PCBs (Arochlors)		1	<1	0	200	
		0		mg/kg					
		Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg		0	0.187	30	
E183216.011	LB155627.023		Arochlor 1016	mg/kg	0.2	<0.2	<0.2	200	
			Arochlor 1221	mg/kg	0.2	<0.2	<0.2	200	
			Arochlor 1232	mg/kg	0.2	<0.2	<0.2	200	
			Arochlor 1242	mg/kg	0.2	<0.2	<0.2	200	
			Arochlor 1248	mg/kg	0.2	<0.2	<0.2	200	
			Arochlor 1254	mg/kg	0.2	<0.2	<0.2	200	
			Arochlor 1260	mg/kg	0.2	<0.2	<0.2	200	
			Arochlor 1262	mg/kg	0.2	<0.2	<0.2	200	
			Arochlor 1268	mg/kg	0.2	<0.2	<0.2	200	
			Total PCBs (Arochlors)	mg/kg	1	<1	<1	200	
		Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0	0	30	

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE183216.003	LB155629.014		Arsenic, As		1	2	3	73	41
3E 1832 10.003	LB155029.014		Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	200	0
			Chromium, Cr	mg/kg				46	7
				mg/kg	0.3	3.0 <0.5	3.3		0
			Copper, Cu	mg/kg	0.5			200	
			Nickel, Ni	mg/kg	0.5	<0.5	<0.5	200	0
			Lead, Pb	mg/kg	1	3	3	64	4
			Zinc, Zn	mg/kg	2	3.0	3.0	97	3
SE183216.011	LB155629.023		Arsenic, As	mg/kg	1	1	<1	134	32
			Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	200	0
			Chromium, Cr	mg/kg	0.3	2.8	2.3	49	19
			Copper, Cu	mg/kg	0.5	<0.5	<0.5	200	0
			Nickel, Ni	mg/kg	0.5	<0.5	<0.5	200	0
			Lead, Pb	mg/kg	1	2	<1	129	63
			Zinc, Zn	mg/kg	2	<2.0	<2.0	200	0
RH (Total Recov	erable Hydrocarbons) in Soil					Meth	od: ME-(AU)-	[ENV]A
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD
SE183216.002	LB155627.025		TRH C10-C14	mg/kg	20	<20	0	200	0
			TRH C15-C28	mg/kg	45	<45	0	200	0
			TRH C29-C36	mg/kg	45	<45	0	200	0
			TRH C37-C40	mg/kg	100	<100	0	200	0
			TRH C10-C36 Total	mg/kg	110	<110	0	200	0
			TRH C10-C40 Total (F bands)	mg/kg	210	<210	0	200	0
		TRH F Bands	TRH >C10-C16	mg/kg	210	<25	0	200	0
		TRITI Danus	TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	<25	0	200	0
					90	<90	0	200	0
			TRH >C16-C34 (F3)	mg/kg					
			TRH >C34-C40 (F4)	mg/kg	120	<120	0	200	0
E183216.011	LB155627.023		TRH C10-C14	mg/kg	20	<20	<20	200	0
			TRH C15-C28	mg/kg	45	<45	<45	200	0
			TRH C29-C36	mg/kg	45	<45	<45	200	0
			TRH C37-C40	mg/kg	100	<100	<100	200	0
			TRH C10-C36 Total	mg/kg	110	<110	<110	200	0
			TRH C10-C40 Total (F bands)	mg/kg	210	<210	<210	200	0
		TRH F Bands	TRH >C10-C16	mg/kg	25	<25	<25	200	0
			TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	<25	<25	200	0
			TRH >C16-C34 (F3)	mg/kg	90	<90	<90	200	0
			TRH >C34-C40 (F4)	mg/kg	120	<120	<120	200	0
'OC's in Soil							Meth	od: ME-(AU)-	[ENV]A
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD
SE183216.003	LB155626.014	Monocyclic	Benzene	mg/kg	0.1	<0.1	<0.1	200	0
		Aromatic	Toluene	mg/kg	0.1	<0.1	<0.1	200	0
			Ethylbenzene	mg/kg	0.1	<0.1	<0.1	200	0
			m/p-xylene	mg/kg	0.2	<0.2	<0.2	200	0
			o-xylene	mg/kg	0.1	<0.1	<0.1	200	0
		Polycyclic	Naphthalene	mg/kg	0.1	<0.1	<0.1	200	0
		Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	3.7	4.3	50	15
		Canogatos	d4-1,2-dichloroethane (Surrogate)	mg/kg		4.0	4.6	50	15
			d8-toluene (Surrogate)	mg/kg		3.5	4.0	50	16
			Bromofluorobenzene (Surrogate)	mg/kg		3.8	3.5	50	7
		Totals	Total Xylenes	mg/kg	0.3	<0.3	<0.3	200	0
		IULAIS	·						0
25402246.044	1.0466000.000	Managerella	Total BTEX	mg/kg	0.6	<0.6	<0.6	200	
SE183216.011	LB155626.023	Monocyclic	Benzene	mg/kg	0.1	<0.1	<0.1	200	0
		Aromatic	Toluene	mg/kg	0.1	<0.1	<0.1	200	0
			Ethylbenzene	mg/kg	0.1	<0.1	<0.1	200	0
			m/p-xylene	mg/kg	0.2	<0.2	<0.2	200	0
			o-xylene	mg/kg	0.1	<0.1	<0.1	200	0
		Delvovelie	Nanhthalene	ma/ka	0.1	-01	<01	200	0

Polycyclic

Surrogates

Naphthalene

Dibromofluoromethane (Surrogate)

d4-1,2-dichloroethane (Surrogate)

Bromofluorobenzene (Surrogate)

d8-toluene (Surrogate)

0

6

6

7

0.1

-

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

<0.1

3.9

4.2

3.8

4.0

<0.1

4.2

4.5

4.1

3.6

200

50

50

50

50

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

VOC's in Soil (cont	tinued)						Meth	od: ME-(AU)-	ENVJAN43
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE183216.011	LB155626.023	Totals	Total Xylenes	mg/kg	0.3	<0.3	<0.3	200	0
			Total BTEX	mg/kg	0.6	<0.6	<0.6	200	0
VOCs in Water							Meth	od: ME-(AU)-	
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE183216.012	LB155745.022	Monocyclic	Benzene	μg/L	0.5	<0.5	0.04	200	0
02100210.012	LD 1001 40.022	Aromatic	Toluene	μg/L	0.5	<0.5	0.04	200	0
		Violitate	Ethylbenzene	μg/L	0.5	<0.5	0.04	200	0
			m/p-xylene	μg/L	1	<1	0.01	200	0
			o-xylene	μg/L	0.5	<0.5	0.02	200	0
		Polycyclic	Naphthalene	μg/L	0.5	<0.5	0.01	200	0
		Surrogates	Dibromofluoromethane (Surrogate)	μg/L	-	5.1	4.88	30	4
		ounogates	d4-1,2-dichloroethane (Surrogate)	μg/L	_	5.7	5.52	30	4
			d8-toluene (Surrogate)	μg/L	_	5.1	4.84	30	4
			Bromofluorobenzene (Surrogate)	μg/L	_	4.3	4.37	30	2
Volatile Petroleum	Hydrocarbons in Soi	1	Diomondorobenzene (ounogate)	µ9/⊏		4.0		od: ME-(AU)-	
Original		1	Devenuetor	Units		Original		Criteria %	
	Duplicate		Parameter		LOR				RPD %
SE183216.003	LB155626.014		TRH C6-C10	mg/kg	25	<25	<25	200	0
			TRH C6-C9	mg/kg	20	<20 3.7	<20 4.3	200 30	0
		Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-				15
			d4-1,2-dichloroethane (Surrogate)	mg/kg		4.0	4.6	30	15 16
			d8-toluene (Surrogate)	mg/kg	-	3.5	4.1	30	7
			Bromofluorobenzene (Surrogate)	mg/kg	_	3.8	3.5	30	
		VPH F Bands	Benzene (F0)	mg/kg	0.1	<0.1	<0.1 <25	200	0
05400046.044	L D455626 022		TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25		200	
SE183216.011	LB155626.023		TRH C6-C10 TRH C6-C9	mg/kg	25 20	<25 <20	<25 <20	200	0
				mg/kg	- 20	3.9	4.2	30	6
		Surrogates	Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate)	mg/kg	-	4.2	4.2	30	6
				mg/kg	-	3.8	4.5	30	7
			d8-toluene (Surrogate)	mg/kg	-	4.0	3.6	30	11
		VPH F Bands	Bromofluorobenzene (Surrogate)	mg/kg	-		<0.1		0
		VPH F banus	Benzene (F0) TRH C6-C10 minus BTEX (F1)	mg/kg	0.1	<0.1 <25	<25	200	0
				mg/kg	25	×25			
	Hydrocarbons in Wa	iter						od: ME-(AU)-	
Original	Duplicate		Parameter	Units	LOR	Original		Criteria %	RPD %
SE183216.012	LB155745.022		TRH C6-C10	μg/L	50	<50	0	200	0
			TRH C6-C9	μg/L	40	<40	0	200	0
		Surrogates	Dibromofluoromethane (Surrogate)	μg/L	-	5.1	4.88	30	4
			d4-1,2-dichloroethane (Surrogate)	μg/L	-	5.7	5.52	30	4
			d8-toluene (Surrogate)	μg/L	-	5.1	4.84	30	4
			Bromofluorobenzene (Surrogate)	μg/L	-	4.3	4.37	30	2
		VPH F Bands	Benzene (F0)	μg/L	0.5	<0.5	0.04	200	0
			TRH C6-C10 minus BTEX (F1)	μg/L	50	<50	-0.12	200	0
SE183244.010	LB155745.023		TRH C6-C10	μg/L	50	0	0	200	0
		-	TRH C6-C9	μg/L	40	0	0	200	0
		Surrogates	Dibromofluoromethane (Surrogate)	μg/L	-	4.8	5.31	30	10
			d4-1,2-dichloroethane (Surrogate)	μg/L	-	5.45	6.05	30	10
			d8-toluene (Surrogate)	μg/L	-	4.8	5.22	30	8
			Bromofluorobenzene (Surrogate)	μg/L	-	4.21	4.16	30	1
		VPH F Bands	Benzene (F0)	μg/L	0.5	0.05	0.04	200	0
			TRH C6-C10 minus BTEX (F1)	µg/L	50	-0.16	-0.17	200	0

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Exchangeable Cations and C	ation Exchange Capacity (CEC/ESP/SAR)		Method: ME-(AU)-[E				
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB155649.002	Exchangeable Sodium, Na	mg/kg	2	NA	72.68	80 - 120	102
	Exchangeable Potassium, K	mg/kg	2	NA	238.12	80 - 120	97
	Exchangeable Calcium, Ca	mg/kg	2	NA	692	80 - 120	91
	Exchangeable Magnesium, Mg	mg/kg	2	NA	134.2	80 - 120	100
Mercury in Soil					N	Nethod: ME-(A	U)-[ENV]AN31
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB155630.002	Mercury	mg/kg	0.05	0.19	0.2	70 - 130	96

OC Pesticides in Soil

Hepsohor mgkg 0.1 0.2 0.2 66 1 40 100 Adm mgkg 0.1 0.2 0.2 0.6 140 0.00 Dels BIC mgkg 0.1 0.2 0.2 0.6 140 0.00 Dels Dir mgkg 0.1 0.2 0.2 0.6 140 0.00 Dels Dir mgkg 0.1 0.2 0.2 0.6 140 0.00 Derogates Technor-msylene (TCMX) (Surrogate) mgkg 0.1 0.2 0.2 0.6 140 0.00 Sympole Nume Parameter mgkg 0.5 2.0 2 0.6 140 0.00 Disport (Charymfos Ethy) mgkg 0.5 2.0 2 0.0 140 100 Disport (Charymfos Ethy) mgkg 0.5 2.0 2 0.6 140 100 Disport (Charymfos Ethy) mgkg 0.5 2.0 2 0.6 140 100 Disport (Charymfos Ethy) mgkg 0.5 0.5 40.130 100	OC Pesticides in Sc	bil					I	Method: ME-(A	U)-[ENV]AN42
Addin mg/dg 0.1 0.2 0.2 60.140 0.160 Deld mg/dg 0.1 0.2 0.2 0.01 0.02 Deld Deld mg/gg 0.1 0.2 0.2 0.01 0.02 Deld Deld mg/gg 0.2 0.2 0.01 0.02 Burgate Tetrachionom-xylene (TCMX) (Surogate) mg/gg 0.1 0.2 0.2 0.01 0.01 Portectose Instruct Tetrachionom-xylene (TCMX) (Surogate) mg/gg 0.1 0.2 0.2 0.01 0.01 Bis5627.002 Dichlorova mg/gg 0.5 0.01	Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
Petides mgkg 0.1 0.2 0.2 60.140 104 Dedm mgkg 0.2 0.2 0.2 60.140 104 Defdm mgkg 0.2 0.2 0.2 60.140 108 pp:DDT mgkg 0.1 0.2 0.2 60.140 108 Sumogate pp:DDT mgkg 0.1 0.2 0.2 60.140 108 Patchore-mxylere (TCMX) (Surogate) mgkg 0.1 0.2 0.2 60.140 108 Surogate Parameter Visite Ngkg 0.5 2.0 2.0 60.140 101 Diazono (Dimujula) mgkg 0.2 1.8 2.0 60.140 108 Diazono (Dimujula) mgkg 0.2 1.8 0.5 0.5 40.10 108 Bis Sorogate 2-fluorobiners (Surogate) mgkg 0.1 4.2 40.140 105 Surogate 2-fluorobiners (Surogate) mgkg 0.1 4.2<	LB155627.002		Heptachlor	mg/kg	0.1	0.2	0.2	60 - 140	109
Deletini mg/kg 0.2 0.2 0.2 0.2 0.1 0.05 Endrin mg/kg 0.2 0.2 0.1 0.2 0.2 0.1 0.9 p.p'-DDT mg/kg 0.1 0.15 40.15 99 Presetoles In Sol mg/kg 0.1 0.15 40.15 96 Sample Number Parenetor Variant Sol Resoult Expected Criteria % Recovery EB15627.002 Dichtoros mg/kg 0.5 2.0 2.2 60.140 100 EB15627.002 Dichtoros mg/kg 0.5 2.3 2 60.140 101 EB15627.002 Dichtoros mg/kg 0.5 2.3 2 60.140 103 EB15627.002 Dichtorogete mg/kg 0.2 1.8 2 60.140 108 EB15627.002 Alurobichenyl (Surogete) mg/kg 0.1 4.2 4 60.140 101 EB15627.002 Parenetr			Aldrin	mg/kg	0.1	0.2	0.2	60 - 140	106
Endmin mg/kg 0.2 40.2 0.2 60.1 0.0 0.2 0.0			Delta BHC	mg/kg	0.1	0.2	0.2	60 - 140	104
pp/DDT mg/kg 0.1 0.2 0.2 6.0 10 Surogates Tetachiorom-sydene (TCMX) (Surogate) mg/kg 0.1 0.14 0.15 0.0<			Dieldrin	mg/kg	0.2	0.2	0.2	60 - 140	105
SuragatesSuragatesTetachloro-m-sydeer (CRMX) (Suragate)mpkg00.140.150.130.130.130.150.13Sample NumberParameterParameterUnitsLORResultExpectedCriteria & ResveryResveryLB155627.002ParameterDichloroysettomgkg0.52.3260-140101Dichloroysettomgkg0.52.3260-140101 <td></td> <td></td> <td>Endrin</td> <td>mg/kg</td> <td>0.2</td> <td><0.2</td> <td>0.2</td> <td>60 - 140</td> <td>99</td>			Endrin	mg/kg	0.2	<0.2	0.2	60 - 140	99
P Pesticides in Soli Method: ME-(AU)-[ENV]AN Sample Number Parameter Units LOR Result Expected Criteria % Recovery Bi55627.002 Diazion (Dimyide) mg/kg 0.5 2.0 2 60 · 140 100 Diazion (Dimyide) mg/kg 0.5 2.3 2 60 · 140 100 Ellion mg/kg 0.2 2.2 2 60 · 140 108 Surrogates 2/fluorobipenyl (Surrogate) mg/kg 0.2 1.8 2 60 · 140 108 Surrogates 2/fluorobipenyl (Surrogate) mg/kg 0.2 1.8 2 60 · 140 108 Sample Number Parameter mg/kg 0.1 4.2 4 60 · 140 105 Sample Number Parameter mg/kg 0.1 4.2 4 60 · 140 106 Acenaphthylene mg/kg 0.1 4.2 4 60 · 140 108 Prene mg/kg 0.1 4.2			p,p'-DDT	mg/kg	0.1	0.2	0.2	60 - 140	89
Sample Number Parameter Units LOR Result Expected Criteria % Recovery LB155627.002 Dichlorvos mg/kg 0.5 2.0 2 60-140 100 LB155627.002 Dichlorvorfios (Chioryrifos Ethyl) mg/kg 0.2 2.3 2 60-140 117 Chioryrifos (Chioryrifos Ethyl) mg/kg 0.2 1.8 2 60-140 100 Ethion mg/kg 0.2 1.8 2 60-140 108 Surogates 2-fluorobiphenyl (Surogate) mg/kg 0.2 1.8 2 60-140 108 Maphte Number Parametor mg/kg 0.2 1.8 2 60-140 100 Surogates Parametor Units LOR Result Expected Criteria % Recovery LB155627.002 Naphthalene mg/kg 0.1 4.2 4 60-140 106 Acenaphthone mg/kg 0.1 4.2 4 60-140 1		Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0.14	0.15	40 - 130	96
Bisse27.002 Dichlorvos Dicklorvos mg/kg 0.5 2.0 2 60-140 100 Diazinon (Dimpylate) mg/kg 0.5 2.3 2 60-140 117 Chlorpyrifos (Chlorpyrifos Ethyl) mg/kg 0.2 2.2 2 60-140 108 Surrogates 2-fluorobiphenyl (Surrogate) mg/kg 0.2 1.8 2 60-140 108 Surrogates 2-fluorobiphenyl (Surrogate) mg/kg 0.5 0.5 40-130 92 CAH (Polynuclear Aromatic Hydrocarbors) In Soll Nample Number Parameter VInits LOR Result Exposeted Criteria % Recovery LB155627.002 Naphthalene mg/kg 0.1 4.2 4 60-140 106 Accaraphthylene mg/kg 0.1 4.2 4 60-140 106 Accaraphthylene mg/kg 0.1 4.2 4 60-140 106 Accaraphthylene mg/kg 0.1 4.1 4 <td>OP Pesticides in Sc</td> <td>il -</td> <td></td> <td></td> <td></td> <td></td> <td>l</td> <td>Method: ME-(A</td> <td>U)-[ENV]AN4</td>	OP Pesticides in Sc	il -					l	Method: ME-(A	U)-[ENV]AN4
Diazinon (Dimpyliste) mg/kg 0.5 2.3 2 60 - 140 117 Chlorpyrifis (Chlorpyrifis (Ethyl) mg/kg 0.2 2.2 2 60 - 140 108 Ethion mg/kg 0.2 1.8 2 60 - 140 108 Surrogates Zinobiphenyl (Surrogate) mg/kg -0.5 0.5 40 - 130 90 Atl Polynuclear Aromatic Hydrocarbons) in Sol mg/kg -0 0.5 0.5 40 - 130 92 Sample Number Parameter Units LOR Result Expected Criteria % Recovery LB155627.002 Naphthalene mg/kg 0.1 4.2 4 60 - 140 106 Accnaphthylene mg/kg 0.1 4.2 4 60 - 140 106 Fluoranthene mg/kg 0.1 4.2 4 60 - 140 106 Accnaphthene mg/kg 0.1 4.2 4 60 - 140 108 Fluoranthene mg/kg 0.1	Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
Chlorpyrifos (Chlorpyrifos Ethyl) mg/kg 0.2 2.2 2 60 - 140 108 Ethion mg/kg 0.2 1.8 2 60 - 140 89 Surogates 2-fluorobiphenyl (Surrogate) mg/kg - 0.5 0.5 40 - 130 89 AH (Polynuclear Aromatic Hydrocarbox) in Soll Wethod: KE-(AU)-(ENV/AN Sample Number Parameter Ng/kg 0.1 4.2 4 60 - 140 106 ALF (Polynuclear Aromatic Hydrocarbox) in Soll Wethod: KE-(AU)-(ENV/AN Sample Number Parameter Ng/kg 0.1 4.2 4 60 - 140 106 Acenaphthylene mg/kg 0.1 4.2 4 60 - 140 106 Acenaphthylene mg/kg 0.1 4.2 4 60 - 140 106 Acenaphthylene mg/kg 0.1 4.2 4 60 - 140 106 Acenaphthylene mg/kg 0.1 4.1 4 60 - 140 106 Acenaphthyle	LB155627.002		Dichlorvos	mg/kg	0.5	2.0	2	60 - 140	100
Ethion mg/kg 0.2 1.8 2 60 - 140 89 Surogates 2-fluorobiphenyl (Surogate) mg/kg - 0.5 0.5 40 - 130 90 d14-perphenyl (Surogate) mg/kg - 0.5 0.5 40 - 130 90 AH (Polynuclear Aromatic Hydrocarbons) in Sol Wethod: ME-(AU)-(ENV)AN Sample Number Parameter Units LOR Result Expected Criteria % Recovery LB155627.002 Naphthalene mg/kg 0.1 4.2 4 60 - 140 106 Acenaphthylene mg/kg 0.1 4.2 4 60 - 140 105 Acenaphthylene mg/kg 0.1 4.2 4 60 - 140 103 Pituranthene mg/kg 0.1 4.2 4 60 - 140 103 Pituranthene mg/kg 0.1 4.4 40 - 140 103 Pituranthene mg/kg 0.1 4.4 40 - 140 103 Ben			Diazinon (Dimpylate)	mg/kg	0.5	2.3	2	60 - 140	117
Surrogates 2-fluorobiphenyl (Surrogate) ng/kg - 0.5 0.5 40 - 130 90 Atl (-p-terphenyl (Surrogate) mg/kg - 0.5 0.5 40 - 130 92 Atl (Polynuclear Aromatic Hydrocarbons) in Soll wethod: Surrogate Parameter Units LOR Result Expected Criteria % Recovery LB155627.002 Naphthalene mg/kg 0.1 4.2 4 60 - 140 106 Acenaphthylene mg/kg 0.1 4.2 4 60 - 140 106 Acenaphthene mg/kg 0.1 4.2 4 60 - 140 106 Acenaphthene mg/kg 0.1 4.2 4 60 - 140 106 Acenaphthene mg/kg 0.1 4.2 4 60 - 140 106 Acenaphthene mg/kg 0.1 4.2 4 60 - 140 108 Anthracene mg/kg 0.1 4.1 4 60 - 140 108 Benzo(a)prene			Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	2.2	2	60 - 140	108
d14-p-terphenyl (Surrogate) mg/kg - 0.5 0.5 40-130 92 AH (Polynuclear Aromatic Hydrocarbors) In Sol Sample Number Parameter Nethod: NE-(AU)-[ENV/AN Sample Number Parameter Mag/kg 0.1 4.2 4 60-140 106 Accenaphthylene mg/kg 0.1 4.2 4 60-140 106 Accenaphthylene mg/kg 0.1 4.2 4 60-140 106 Phenanthrene mg/kg 0.1 4.2 4 60-140 106 Phenanthrene mg/kg 0.1 4.2 4 60-140 106 Phenanthrene mg/kg 0.1 4.3 4 60-140 106 Purora mg/kg 0.1 4.3 4 60-140 106 Berzo(a)pyrene mg/kg 0.1 4.3 4 60-140 108 Berzo(a)pyrene mg/kg 0.1 4.3 4 60-140 108 Jurogates d5-nitrobenzene (Surrogate) mg/kg 0.1 4.3 40-130 78 Zurogates d5-nitrobenzene (Surrogate) mg/kg 0.5 0.5 40-130 90 Zefluorobiphenyl (Surrogate)<			Ethion	mg/kg	0.2	1.8	2	60 - 140	89
AH (Polynuclear Aromatic Hydrocarbons) in Soll Nather Nather LOR Result Expacted Criteria % Recovery LB155627.002 Naphthalene mg/kg 0.1 4.2 4 60-140 106 Acenaphthylene mg/kg 0.1 4.2 4 60-140 106 Acenaphthylene mg/kg 0.1 4.2 4 60-140 105 Acenaphthene mg/kg 0.1 4.2 4 60-140 106 Acenaphthene mg/kg 0.1 4.2 4 60-140 104 Anthracene mg/kg 0.1 4.1 4 60-140 103 Fluoranthene mg/kg 0.1 4.4 4 60-140 108 Pyrene mg/kg 0.1 4.3 4 60-140 108 Benzo(a)pyrene mg/kg 0.1 4.7 4 60-140 108 Surrogates d5-nitrobenzene (Surrogate) mg/kg 0.5 40-130 <		Surrogates	2-fluorobiphenyl (Surrogate)	mg/kg	-	0.5	0.5	40 - 130	90
Sample Number Parameter Units LOR Result Expected Criteria % Recovery LB155627.002 Naphthalene mg/kg 0.1 4.2 4 60 - 140 106 Acenaphthylene mg/kg 0.1 4.2 4 60 - 140 105 Acenaphthylene mg/kg 0.1 3.9 4 60 - 140 104 Acenaphthylene mg/kg 0.1 4.2 4 60 - 140 106 Phenanthrene mg/kg 0.1 4.2 4 60 - 140 104 Anthracene mg/kg 0.1 4.1 4 60 - 140 103 Fluoranthene mg/kg 0.1 4.4 4 60 - 140 108 Pyrene mg/kg 0.1 4.3 4 60 - 140 108 Surrogates d5-nitrobenzene (Surrogate) mg/kg - 0.4 0.5 40 - 130 78 2-fluorobiphenyl (Surrogate) mg/kg - 0.5			d14-p-terphenyl (Surrogate)	mg/kg	-	0.5	0.5	40 - 130	92
LB155627.002 Naphthalene mg/kg 0.1 4.2 4 60 - 140 106 Acenaphthylene mg/kg 0.1 4.2 4 60 - 140 105 Acenaphthylene mg/kg 0.1 3.9 4 60 - 140 104 Acenaphthene mg/kg 0.1 4.2 4 60 - 140 104 Acenaphthene mg/kg 0.1 4.2 4 60 - 140 104 Anthracene mg/kg 0.1 4.1 4 60 - 140 103 Fluoranthene mg/kg 0.1 4.4 4 60 - 140 108 Pyrene mg/kg 0.1 4.3 4 60 - 140 108 Benzo(a)pyrene mg/kg 0.1 4.7 4 60 - 140 108 Surrogates d5-nitrobenzene (Surrogate) mg/kg -1 4.7 4 60 - 140 108 2-fluorobiphenyl (Surrogate) mg/kg -1 0.5 0.5 40 - 130 <	PAH (Polynuclear A	romatic Hydroca	rbons) in Soil				1	Method: ME-(A	U)-[ENV]AN42
Acenaphthylene mg/kg 0.1 4.2 4 60-140 105 Acenaphthene mg/kg 0.1 3.9 4 60-140 97 Phenanthrene mg/kg 0.1 4.2 4 60-140 104 Anthracene mg/kg 0.1 4.2 4 60-140 104 Fluoranthene mg/kg 0.1 4.1 4 60-140 103 Pyrene mg/kg 0.1 4.4 4 60-140 109 Pyrene mg/kg 0.1 4.3 4 60-140 108 Benzo(a)pyrene mg/kg 0.1 4.3 4 60-140 118 Surrogates d5-nitrobenzene (Surrogate) mg/kg 0.1 4.7 4 60-140 118 2-fluorobiphenyl (Surrogate) mg/kg - 0.4 0.5 40-130 90 2-fluorobiphenyl (Surrogate) mg/kg - 0.5 0.5 40-130 92 rCB	Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
Acenaphthene mg/kg 0.1 3.9 4 60-140 97 Phenanthrene mg/kg 0.1 4.2 4 60-140 104 Anthracene mg/kg 0.1 4.2 4 60-140 103 Fluoranthene mg/kg 0.1 4.1 4 60-140 109 Pyrene mg/kg 0.1 4.4 4 60-140 109 Benzo(a)pyrene mg/kg 0.1 4.3 4 60-140 108 Surrogates d5-nitrobenzene (Surrogate) mg/kg 0.1 4.7 4 60-140 108 2-fluorobiphenyl (Surrogate) mg/kg 0.1 4.7 4 60-140 118 2-fluorobiphenyl (Surrogate) mg/kg - 0.4 0.5 40-130 90 14-p-terphenyl (Surrogate) mg/kg - 0.5 0.5 40-130 92 mg/kg - 0.5 0.5 40-130 92 <td>LB155627.002</td> <td></td> <td>Naphthalene</td> <td>mg/kg</td> <td>0.1</td> <td>4.2</td> <td>4</td> <td>60 - 140</td> <td>106</td>	LB155627.002		Naphthalene	mg/kg	0.1	4.2	4	60 - 140	106
Phenanthrene mg/kg 0.1 4.2 4 60 - 140 104 Anthracene mg/kg 0.1 4.1 4 60 - 140 103 Fluoranthene mg/kg 0.1 4.1 4 60 - 140 109 Pyrene mg/kg 0.1 4.4 4 60 - 140 108 Benzo(a)pyrene mg/kg 0.1 4.3 4 60 - 140 108 Surrogates d5-nitrobenzene (Surrogate) mg/kg 0.1 4.7 4 60 - 140 118 2-fluorobiphenyl (Surrogate) mg/kg - 0.4 0.5 40 - 130 78 2-fluorobiphenyl (Surrogate) mg/kg - 0.5 0.5 40 - 130 90 d14-p-terphenyl (Surrogate) mg/kg - 0.5 0.5 40 - 130 92 YCBs in Soli Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y			Acenaphthylene	mg/kg	0.1	4.2	4	60 - 140	105
Anthracene mg/kg 0.1 4.1 4 60 - 140 103 Fluoranthene mg/kg 0.1 4.4 4 60 - 140 109 Pyrene mg/kg 0.1 4.4 4 60 - 140 109 Benzo(a)pyrene mg/kg 0.1 4.3 4 60 - 140 108 Surrogates d5-nitrobenzene (Surrogate) mg/kg 0.1 4.7 4 60 - 140 118 2-fluorobiphenyl (Surrogate) mg/kg - 0.4 0.5 40 - 130 78 2-fluorobiphenyl (Surrogate) mg/kg - 0.5 0.5 40 - 130 90 d14-p-terphenyl (Surrogate) mg/kg - 0.5 0.5 40 - 130 92 CBs in Soil Sample Number Parameter Units LOR Result Expected Criteria % Recovery			Acenaphthene	mg/kg	0.1	3.9	4	60 - 140	97
Fluoranthene mg/kg 0.1 4.4 4 60 - 140 109 Pyrene mg/kg 0.1 4.3 4 60 - 140 108 Benzo(a)pyrene mg/kg 0.1 4.3 4 60 - 140 108 Surrogates d5-nitrobenzene (Surrogate) mg/kg 0.1 4.7 4 60 - 140 118 2-fluorobiphenyl (Surogate) mg/kg - 0.4 0.5 40 - 130 78 2-fluorobiphenyl (Surogate) mg/kg - 0.5 0.5 40 - 130 90 141-p-terphenyl (Surogate) mg/kg - 0.5 0.5 40 - 130 92 *CEs in Soil * * * * * * * * Sample Number Parameter Units LOR Result Expected Criteria % Recovery			Phenanthrene	mg/kg	0.1	4.2	4	60 - 140	104
Pyrene mg/kg 0.1 4.3 4 60 - 140 108 Benzo(a)pyrene mg/kg 0.1 4.7 4 60 - 140 118 Surrogates d5-nitrobenzene (Surrogate) mg/kg - 0.4 0.5 40 - 130 78 2-fluorobiphenyl (Surrogate) mg/kg - 0.5 0.5 40 - 130 90 d14-p-terphenyl (Surrogate) mg/kg - 0.5 0.5 40 - 130 92 *CBs in Soil ************************************			Anthracene	mg/kg	0.1	4.1	4	60 - 140	103
Benzo(a)pyrene mg/kg 0.1 4.7 4 60 - 140 118 Surrogates d5-nitrobenzene (Surrogate) mg/kg - 0.4 0.5 40 - 130 78 2-fluorobiphenyl (Surrogate) mg/kg - 0.5 0.5 40 - 130 90 d14-p-terphenyl (Surrogate) mg/kg - 0.5 0.5 40 - 130 92 *CBs in Soil ************************************			Fluoranthene	mg/kg	0.1	4.4	4	60 - 140	109
Murrogates d5-nitrobenzene (Surrogate) mg/kg - 0.4 0.5 40 - 130 78 2-fluorobiphenyl (Surrogate) mg/kg - 0.5 0.5 40 - 130 90 d14-p-terphenyl (Surrogate) mg/kg - 0.5 0.5 40 - 130 90 rCBs in Soil mg/kg - 0.5 0.5 40 - 130 92 Sample Number Parameter Units LOR Result Expected Criteria % Recovery			Pyrene	mg/kg	0.1	4.3	4	60 - 140	108
2-fluorobiphenyl (Surrogate) mg/kg - 0.5 40 - 130 90 d14-p-terphenyl (Surrogate) mg/kg - 0.5 0.5 40 - 130 92 *CBs in Soil ************************************			Benzo(a)pyrene	mg/kg	0.1	4.7	4	60 - 140	118
d14-p-terphenyl (Surrogate) mg/kg - 0.5 0.5 40 - 130 92 *CBs in Soil *CBs in Soil * Method: ME-(AU)-[ENV]AN Sample Number Parameter Units LOR Result Expected Criteria % Recovery		Surrogates	d5-nitrobenzene (Surrogate)	mg/kg	-	0.4	0.5	40 - 130	78
CBs in Soil Method: ME-(AU)-[ENV]AN Sample Number Parameter Units LOR Result Expected Criteria % Recovery			2-fluorobiphenyl (Surrogate)	mg/kg	-	0.5	0.5	40 - 130	90
Sample Number Parameter Units LOR Result Expected Criteria % Recovery			d14-p-terphenyl (Surrogate)	mg/kg	-	0.5	0.5	40 - 130	92
	PCBs in Soil						l	Method: ME-(A	U)-[ENV]AN42
LB155627.002 Arochlor 1260 mg/kg 0.2 0.5 0.4 60 - 140 114	Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
	LB155627.002		Arochlor 1260	mg/kg	0.2	0.5	0.4	60 - 140	114

al Recoverable Elements in Soil/Waste Solids/Materials by ICPOES

Total Recoverable Elements	in Soll/Waste Solids/Materials by ICPOES				Method:	ME-(AU)-[EN\	/JAN040/AN320
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB155629.002	Arsenic, As	mg/kg	1	340	336.32	79 - 120	100
	Cadmium, Cd	mg/kg	0.3	430	416.6	69 - 131	103
	Chromium, Cr	mg/kg	0.3	38	35.2	80 - 120	109
	Copper, Cu	mg/kg	0.5	330	370.46	80 - 120	88
	Nickel, Ni	mg/kg	0.5	180	210.88	79 - 120	87
	Lead, Pb	mg/kg	1	92	107.87	79 - 120	85
	Zinc, Zn	mg/kg	2	290	301.27	80 - 121	96
TRH (Total Recoverable Hyd	rocarbons) in Soil				N	lethod: ME-(A	U)-[ENV]AN403
Sample Number	Parameter	Units	LOR				

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

						-	Method: ME-(Al	
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recover
_B155627.002		TRH C10-C14	mg/kg	20	43	40	60 - 140	108
		TRH C15-C28	mg/kg	45	<45	40	60 - 140	93
		TRH C29-C36	mg/kg	45	<45	40	60 - 140	80
	TRH F Bands	TRH >C10-C16	mg/kg	25	39	40	60 - 140	98
		TRH >C16-C34 (F3)	mg/kg	90	<90	40	60 - 140	83
		TRH >C34-C40 (F4)	mg/kg	120	<120	20	60 - 140	95
RH (Total Recove	erable Hydrocarbo	ns) in Water				P	Method: ME-(AL	J)-[ENV]A
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recover
_B155528.002		TRH C10-C14	µg/L	50	950	1200	60 - 140	79
		TRH C15-C28	μg/L	200	1200	1200	60 - 140	101
		TRH C29-C36	μg/L	200	1300	1200	60 - 140	110
	TRH F Bands	TRH >C10-C16	μg/L	60	1100	1200	60 - 140	89
		TRH >C16-C34 (F3)	μg/L	500	1300	1200	60 - 140	110
		TRH >C34-C40 (F4)	μg/L	500	640	600	60 - 140	107
OC's in Soil							Method: ME-(AL	
		D	11-34-	100	Decult			
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	
LB155626.002	Monocyclic	Benzene	mg/kg	0.1	2.9	2.9	60 - 140	99
	Aromatic	Toluene	mg/kg	0.1	2.1	2.9	60 - 140	72
		Ethylbenzene	mg/kg	0.1	2.0	2.9	60 - 140	69
		m/p-xylene	mg/kg	0.2	4.0	5.8	60 - 140	68
		o-xylene	mg/kg	0.1	1.8	2.9	60 - 140	62
	Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	6.4	5	60 - 140	128
		d4-1,2-dichloroethane (Surrogate)	mg/kg	-	4.5	5	60 - 140	89
		d8-toluene (Surrogate)	mg/kg	-	4.9	5	60 - 140	98
		Bromofluorobenzene (Surrogate)	mg/kg	-	4.8	5	60 - 140	95
OCs in Water						ŀ	Method: ME-(Al	J)-[ENV]/
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recove
LB155745.002	Monocyclic	Benzene	µg/L	0.5	51	45.45	60 - 140	113
LB155745.002	Monocyclic Aromatic	Benzene	μg/L μg/L	0.5	51 51	45.45 45.45	60 - 140 60 - 140	113
LB155745.002	-							112
LB155745.002	-	Toluene	µg/L	0.5	51	45.45	60 - 140	112 113
LB155745.002	-	Toluene Ethylbenzene	μg/L μg/L μg/L	0.5 0.5	51 51	45.45 45.45	60 - 140 60 - 140	112 113 113
LB155745.002	-	Toluene Ethylbenzene m/p-xylene o-xylene	µg/L µg/L µg/L µg/L	0.5 0.5 1	51 51 100	45.45 45.45 90.9	60 - 140 60 - 140 60 - 140	112 113 113
LB155745.002	Aromatic	Toluene Ethylbenzene m/p-xylene o-xylene Dibromofluoromethane (Surrogate)	µg/L µg/L µg/L µg/L µg/L	0.5 0.5 1 0.5	51 51 100 51 4.5	45.45 45.45 90.9 45.45	60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140	112 113 113 113
LB155745.002	Aromatic	Toluene Ethylbenzene m/p-xylene o-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate)	µg/L µg/L µg/L µg/L µg/L µg/L	0.5 0.5 1 0.5 -	51 51 100 51 4.5 4.4	45.45 45.45 90.9 45.45 5 5	60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140	112 113 113 113 113 89 88
LB155745.002	Aromatic	Toluene Ethylbenzene m/p-xylene o-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate)	µg/L µg/L µg/L µg/L µg/L µg/L	0.5 0.5 1 0.5 -	51 51 100 51 4.5 4.4 4.7	45.45 45.45 90.9 45.45 5 5 5 5	60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140	112 113 113 113 89 88 93
	Aromatic Surrogates	Toluene Ethylbenzene m/p-xylene o-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate)	µg/L µg/L µg/L µg/L µg/L µg/L	0.5 0.5 1 0.5 - -	51 51 100 51 4.5 4.4	45.45 45.45 90.9 45.45 5 5 5 5 5 5	60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140	112 113 113 113 89 88 93 93 97
olatile Petroleum	Aromatic Surrogates	Toluene Ethylbenzene m/p-xylene o-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate)	µg/L µg/L µg/L µg/L µg/L µg/L µg/L	0.5 0.5 1 - - - -	51 51 100 51 4.5 4.4 4.7 4.9	45.45 45.45 90.9 45.45 5 5 5 5 5	60 - 140 60 - 140 Vethod: ME-(AL	112 113 113 113 89 88 93 93 97 J)-[ENV]A
olatile Petroleum Sample Number	Aromatic Surrogates	Toluene Ethylbenzene m/p-xylene o-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) ioll Parameter	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	0.5 0.5 1 0.5 - - - -	51 51 100 51 4.5 4.4 4.7 4.9 Result	45.45 45.45 90.9 45.45 5 5 5 5 5 5 5 5	60 - 140 60 - 140 Vethod: ME-(AL Criteria %	112 113 113 113 89 88 93 97 J)-[ENV]/ Recove
	Aromatic Surrogates	Toluene Ethylbenzene m/p-xylene o-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) ioll Parameter TRH C6-C10	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	0.5 0.5 1 0.5 - - - - - - 25	51 51 100 51 4.5 4.4 4.7 4.9 Result <25	45.45 45.45 90.9 45.45 5 5 5 5 5 Expected 24.65	60 - 140 60 - 140 Vethod: ME-(AL Criteria % 60 - 140	112 113 113 113 89 88 93 93 97 J)-[ENV]/ Recove 88
' <mark>olatile Petroleum</mark> Sample Number	Aromatic Surrogates Hydrocarbons in S	Toluene Ethylbenzene m/p-xylene o-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) ioll Parameter TRH C6-C10 TRH C6-C9	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	0.5 0.5 1 0.5 - - - -	51 51 100 51 4.5 4.4 4.7 4.9 Result <25 20	45.45 45.45 90.9 45.45 5 5 5 5 Expected 24.65 23.2	60 - 140 60 - 140 Kethod: ME-(AL Criteria % 60 - 140 60 - 140	112 113 113 113 89 88 93 93 97 J)-[ENV]/ Recove 88 88 87
' <mark>olatile Petroleum</mark> Sample Number	Aromatic Surrogates	Toluene Ethylbenzene m/p-xylene o-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Bromofluorobenzene (Surrogate) TRH C6-C10 TRH C6-C9 Dibromofluoromethane (Surrogate)	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	0.5 0.5 1 0.5 - - - - - - - - - 25 20 -	51 51 100 51 4.5 4.4 4.7 4.9 Result <25 20 6.4	45.45 45.45 90.9 45.45 5 5 5 5 5 Expected 24.65 23.2 5	60 - 140 60 - 140 Kethod: ME-(AL Criteria % 60 - 140 60 - 140 60 - 140	1112 1113 1113 89 88 93 97 J)-[ENV]/ Recove 88 87 128
olatile Petroleum Sample Number	Aromatic Surrogates Hydrocarbons in S	Toluene Ethylbenzene m/p-xylene o-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) ioll Parameter TRH C6-C10 TRH C6-C9	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	0.5 0.5 1 - - - - - - - - - 25 20	51 51 100 51 4.5 4.4 4.7 4.9 Result <25 20	45.45 45.45 90.9 45.45 5 5 5 5 Expected 24.65 23.2	60 - 140 60 - 140 Kethod: ME-(AL Criteria % 60 - 140 60 - 140	112 113 113 113 89 88 93 93 97 J)-[ENV]/ CRECOVE 88 88 87 125
' <mark>olatile Petroleum</mark> Sample Number	Aromatic Surrogates Hydrocarbons in S	Toluene Ethylbenzene m/p-xylene o-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) ioll Parameter TRH C6-C10 TRH C6-C9 Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d4-2-dichloroethane (Surrogate) d8-toluene (Surrogate)	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	0.5 0.5 1 0.5 - - - - - - - - - - - - - - - - - - -	51 51 100 51 4.5 4.4 4.7 4.9 Result <25 20 6.4 4.5 4.9	45.45 45.45 90.9 45.45 5 5 5 5 Expected 24.65 23.2 5 5 5 5 5 5 5 5 5 5 5 5 5	60 - 140 60 - 140 Kethod: ME-(AL Criteria % 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140	1112 113 113 113 89 88 93 97 97 J)-[ENV]// Recove 88 87 128 89 89 98
' <mark>olatile Petroleum</mark> Sample Number	Aromatic Surrogates Hydrocarbons in S Surrogates	Toluene Ethylbenzene m/p-xylene o-xylene o-xylene data d4-1,2-dichloroethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) bitorobenzene (Surrogate) bitoromofluoromethane (Surrogate) toll Parameter TRH C6-C10 TRH C6-C9 Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) B-toluene (Surrogate) Bromofluorobenzene (Surrogate)	μg/L μg/L	0.5 0.5 1 0.5 - - - - - - - - - - - - - - - - - - -	51 51 100 51 4.5 4.4 4.7 4.9 Result <25 20 6.4 4.5 4.9 4.8	45.45 45.45 90.9 45.45 5 5 5 5 Expected 24.65 23.2 5 5 5 5 5 5 5 5 5 5 5 5 5	60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 Kethod: ME-(AL Criteria % 60 - 140 60 - 140	112 113 113 113 89 88 93 97 VJ-[ENV]A Recove 88 87 128 89 98 98
olatile Petroleum Sample Number	Aromatic Surrogates Hydrocarbons in S	Toluene Ethylbenzene m/p-xylene o-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) ioll Parameter TRH C6-C10 TRH C6-C9 Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d4-2-dichloroethane (Surrogate) d8-toluene (Surrogate)	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	0.5 0.5 1 0.5 - - - - - - - - - - - - - - - - - - -	51 51 100 51 4.5 4.4 4.7 4.9 Result <25 20 6.4 4.5 4.9	45.45 45.45 90.9 45.45 5 5 5 5 Expected 24.65 23.2 5 5 5 5 5 5 5 5 5 5 5 5 5	60 - 140 60 - 140 Kethod: ME-(AL Criteria % 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140	1112 113 113 113 89 88 93 97 97 Recove 88 87 128 89 98 98 95
<mark>olatile Petroleum</mark> Sample Number .B155626.002	Aromatic Surrogates Hydrocarbons in S Surrogates	Toluene Ethylbenzene m/p-xylene o-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) ioll Parameter TRH C6-C10 TRH C6-C9 Dibromofluorobenzene (Surrogate) d4-1,2-dichloroethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) TRH C6-C10 minus BTEX (F1)	μg/L μg/L	0.5 0.5 1 0.5 - - - - - - - - - - - - - - - - - - -	51 51 100 51 4.5 4.4 4.7 4.9 Result <25 20 6.4 4.5 4.9 4.8	45.45 45.45 90.9 45.45 5 5 5 5 Expected 24.65 23.2 5 5 5 5 5 5 5 5 5 5 5 5 5	60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 Kethod: ME-(AL Criteria % 60 - 140 60 - 140	1112 113 113 113 89 88 93 97 VJ-(ENV)/ Recove 88 87 128 89 98 98 95 124
olatile Petroleum Sample Number .B155626.002	Aromatic Surrogates Hydrocarbons in S Surrogates VPH F Bands Hydrocarbons in V	Toluene Ethylbenzene m/p-xylene o-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) ioll Parameter TRH C6-C10 TRH C6-C9 Dibromofluorobenzene (Surrogate) d4-1,2-dichloroethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) TRH C6-C10 minus BTEX (F1)	μg/L μg/L	0.5 0.5 1 0.5 - - - - - - - - - - - - - - - - - - -	51 51 100 51 4.5 4.4 4.7 4.9 Result <25 20 6.4 4.5 4.9 4.8	45.45 45.45 90.9 45.45 5 5 5 5 Expected 24.65 23.2 5 5 5 5 5 5 5 5 5 5 5 5 5	60 - 140 60 - 140 Kethod: ME-(AL Criteria % 60 - 140 60 -	1112 113 113 113 89 88 93 97 Recove 88 87 128 89 98 98 95 - [E NV]/
olatile Petroleum Sample Number .B155626.002 olatile Petroleum Sample Number	Aromatic Surrogates Hydrocarbons in S Surrogates VPH F Bands Hydrocarbons in V	Toluene Ethylbenzene m/p-xylene o-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Bromofluorobenzene (Surrogate) toll Parameter TRH C6-C10 TRH C6-C9 Dibromofluorobentane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) d8-toluene (Surrogate) TRH C6-C10 Vater	μg/L μg/L	0.5 0.5 1 0.5 - - - - - - - - - - - - - - - - - - -	51 51 100 51 4.5 4.4 4.7 4.9 Result <25 20 6.4 4.5 4.9 4.8 <25	45.45 45.45 90.9 45.45 5 5 5 5 5 5 5 5 5 5 5 5 5	60 - 140 60 - 140 Kethod: ME-(AL Criteria % 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 Kethod: ME-(AL)	1112 1113 1113 1113 89 88 93 97 NJ-[ENV]/ Recove 88 87 128 89 98 95 124 J)-[ENV]/ Recove
<mark>olatile Petroleum</mark> Sample Number _B155626.002 olatile Petroleum Sample Number	Aromatic Surrogates Hydrocarbons in S Surrogates VPH F Bands Hydrocarbons in V	Toluene Ethylbenzene m/p-xylene o-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Bromofluorobenzene (Surrogate) toll Parameter TRH C6-C10 TRH C6-C9 Dibromofluorobentane (Surrogate) d4-1,2-dichloroethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Vater Parameter	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L mg/kg mg/kg	0.5 0.5 1 0.5 - - - - - - - - - - - - - - - - - - -	51 51 100 51 4.5 4.4 4.7 4.9 Result <25 20 6.4 4.5 4.9 4.8 <25 Result	45.45 45.45 90.9 45.45 5 5 5 5 5 5 5 5 5 5 5 5 5	60 - 140 60 - 140 Kethod: ME-(AL Criteria % 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 Kethod: ME-(AL Criteria %	1112 1113 1113 1113 89 88 93 97 NJ-[ENV]/ Recove 88 87 128 89 98 95 124 J)-[ENV]/ Recove
<mark>olatile Petroleum</mark> Sample Number _B155626.002 olatile Petroleum Sample Number	Aromatic Surrogates Hydrocarbons in S Surrogates VPH F Bands Hydrocarbons in V	Toluene Ethylbenzene m/p-xylene o-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Bromofluorobenzene (Surrogate) ioll Parameter TRH C6-C10 TRH C6-C9 Dibromofluorobenzene (Surrogate) d4-1,2-dichloroethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Bromofluorobenzene (Surrogate) TRH C6-C10 minus BTEX (F1) Vater Parameter TRH C6-C10 TRH C6-C10 TRH C6-C10 TRH C6-C10 TRH C6-C10 TRH C6-C10	μg/L μg/L	0.5 0.5 1 0.5 - - - - - 25 20 - - - - 25 20 - - 25 20 - - 50	51 51 100 51 4.5 4.4 4.7 4.9 Result <25 20 6.4 4.5 4.9 4.8 <25 20 6.4 4.5 4.9 4.8 <25	45.45 45.45 90.9 45.45 5 5 5 5 5 5 5 5 5 5 5 5 5	60 - 140 60 - 140 Kethod: ME-(AL Criteria % 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 Kethod: ME-(AL Criteria % 60 - 140	1112 113 113 113 89 88 93 97 Recove 88 87 128 89 98 95 124 J)-[ENV]/ Recove 100 94
<mark>olatile Petroleum</mark> Sample Number _B155626.002 olatile Petroleum Sample Number	Aromatic Aromatic Surrogates Hydrocarbons in S VPH F Bands Hydrocarbons in V	Toluene Ethylbenzene m/p-xylene o-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) koll Parameter TRH C6-C10 TRH C6-C9 Dibromofluorobenzene (Surrogate) d4-1,2-dichloroethane (Surrogate) d4-1,2-dichloroethane (Surrogate) Vater Parameter TRH C6-C10 TRH C6-C9 Dibromofluoromethane (Surrogate)	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/Rg mg/kg mg/kg <	0.5 0.5 1 0.5 - - - - - 25 20 - - - 25 20 - - - 25 20 - - 50 40	51 51 100 51 4.5 4.4 4.7 4.9 Result <25 20 6.4 4.5 4.9 4.8 <25 Result 940 770 4.5	45.45 45.45 90.9 45.45 5 5 5 5 5 5 5 5 5 5 5 5 5	60 - 140 60 - 140 Kethod: ME-(AL Criteria % 60 - 140 60 - 140 60 - 140 60 - 140 Kethod: ME-(AL Criteria % 60 - 140 60 - 140 60 - 140 Kethod: ME-(AL Criteria % 60 - 140 60 - 140	1112 113 113 113 89 88 93 97 Recove 88 87 126 89 98 95 124 Recove 100 94 89
olatile Petroleum Sample Number .B155626.002 olatile Petroleum Sample Number	Aromatic Aromatic Surrogates Hydrocarbons in S VPH F Bands Hydrocarbons in V	Toluene Ethylbenzene m/p-xylene o-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) koll Parameter TRH C6-C10 TRH C6-C10 d8-toluene (Surrogate) d4-1,2-dichloroethane (Surrogate) d4-1,2-dichloroethane (Surrogate) Vater Parameter TRH C6-C10 TRH C6-C10	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L mg/kg μg/L μg/L μg/L μg/L μg/L	0.5 0.5 1 0.5 - - - - - - - - - - - - - - - - - - -	51 51 100 51 4.5 4.4 4.7 4.9 Result <25 20 6.4 4.9 4.8 <25 Result 940 770 4.5 4.4	45.45 45.45 90.9 45.45 5 5 5 5 Expected 24.65 23.2 5 5 5 5 5 5 5 5 5 5 5 5 5	60 - 140 60 - 140 Kethod: ME-(AL Criteria % 60 - 140 60 - 140 60 - 140 60 - 140 Kethod: ME-(AL Criteria % 60 - 140 60	1112 113 113 113 89 88 93 97 J)-[ENV]/ Recove 88 87 128 89 988 95 124 J)-[ENV]/ Recove 100 94 88
<mark>olatile Petroleum</mark> Sample Number _B155626.002	Aromatic Aromatic Surrogates Hydrocarbons in S VPH F Bands Hydrocarbons in V	Toluene Ethylbenzene m/p-xylene o-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) koll Parameter TRH C6-C10 TRH C6-C9 Dibromofluorobenzene (Surrogate) d4-1,2-dichloroethane (Surrogate) d4-1,2-dichloroethane (Surrogate) Vater Parameter TRH C6-C10 TRH C6-C9 Dibromofluoromethane (Surrogate)	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/Rg mg/kg mg/kg <	0.5 0.5 1 0.5 - - - - - - - - - - - - - - - - - - -	51 51 100 51 4.5 4.4 4.7 4.9 Result <25 20 6.4 4.5 4.9 4.8 <25 Result 940 770 4.5	45.45 45.45 90.9 45.45 5 5 5 5 5 5 5 5 5 5 5 5 5	60 - 140 60 - 140 Kethod: ME-(AL Criteria % 60 - 140 60 - 140 60 - 140 60 - 140 Kethod: ME-(AL Criteria % 60 - 140 60 - 140 60 - 140 60 - 140 Kethod: ME-(AL Kethod: ME-(AL) Kethod: ME-(AL) Kethod: ME-(AL)	1112 1113 1113 1113 89 88 93 97 Recove 88 87 128 89 98 95 124 J)-[ENV]/ Recove 80 95 124 J)-[ENV]/ 80 95 124 J)-[ENV]/ 80 95 124 124 125 124 124 125 124 125 124 125 124 125 124 125 125 125 125 125 125 125 125 125 125

MATRIX SPIKES

Method: ME-(AU)-[ENV]AN420

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Mercury in Soil						Met	hod: ME-(AL	J)-[ENV]AN312
QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE183339.001	LB155630.004	Mercury	mg/kg	0.05	0.20	<0.05	0.2	90

OC Pesticides in Soil

C Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recovery
E183339.003	LB155627.027		Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	<0.1	-	-
			Alpha BHC	mg/kg	0.1	<0.1	<0.1	-	-
			Lindane	mg/kg	0.1	<0.1	<0.1	-	-
			Heptachlor	mg/kg	0.1	0.2	<0.1	0.2	122
			Aldrin	mg/kg	0.1	0.2	<0.1	0.2	117
			Beta BHC	mg/kg	0.1	<0.1	<0.1	-	-
			Delta BHC	mg/kg	0.1	0.2	<0.1	0.2	116
			Heptachlor epoxide	mg/kg	0.1	<0.1	<0.1	-	-
			o,p'-DDE	mg/kg	0.1	<0.1	<0.1	-	-
			Alpha Endosulfan	mg/kg	0.2	<0.2	<0.2	-	-
			Gamma Chlordane	mg/kg	0.1	<0.1	<0.1	-	-
			Alpha Chlordane	mg/kg	0.1	<0.1	<0.1	-	-
			trans-Nonachlor	mg/kg	0.1	<0.1	<0.1	-	-
			p,p'-DDE	mg/kg	0.1	<0.1	<0.1	-	-
			Dieldrin	mg/kg	0.2	0.2	<0.2	0.2	112
			Endrin	mg/kg	0.2	0.2	<0.2	0.2	105
			o,p'-DDD	mg/kg	0.1	<0.1	<0.1	-	-
			o,p'-DDT	mg/kg	0.1	<0.1	<0.1	-	-
			Beta Endosulfan	mg/kg	0.2	<0.2	<0.2	-	-
			p,p'-DDD	mg/kg	0.1	<0.1	<0.1	-	-
			p,p'-DDT	mg/kg	0.1	0.2	<0.1	0.2	97
			Endosulfan sulphate	mg/kg	0.1	<0.1	<0.1	-	-
			Endrin Aldehyde	mg/kg	0.1	<0.1	<0.1	-	-
			Methoxychlor	mg/kg	0.1	<0.1	<0.1	-	-
			Endrin Ketone	mg/kg	0.1	<0.1	<0.1	-	-
			Isodrin	mg/kg	0.1	<0.1	<0.1	-	-
			Mirex	mg/kg	0.1	<0.1	<0.1	-	-
			Total CLP OC Pesticides	mg/kg	1	1	<1	-	-
	-	Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0.14	0.18	-	91

OF Features III	001						IAN	60100. MIL-(AO)-	-Triasbase
QC Sample	Sample Number		Parameter	Units	LOR	Original	Spike	Recovery%	
SE183216.001	LB155627.025		Dichlorvos	mg/kg	0.5	<0.5	2	110	
			Dimethoate	mg/kg	0.5	<0.5	-	-	
			Diazinon (Dimpylate)	mg/kg	0.5	<0.5	2	92	
			Fenitrothion	mg/kg	0.2	<0.2	-	-	
			Malathion	mg/kg	0.2	<0.2	-	-	
			Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2	2	99	
			Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	-	-	
			Bromophos Ethyl	mg/kg	0.2	<0.2	-	-	
			Methidathion	mg/kg	0.5	<0.5	-	-	
			Ethion	mg/kg	0.2	<0.2	2	103	
			Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	-	-	
	_		Total OP Pesticides*	mg/kg	1.7	<1.7	-	-	
		Surrogates	2-fluorobiphenyl (Surrogate)	mg/kg	-	0.4	-	90	
			d14-p-terphenyl (Surrogate)	mg/kg	-	0.5	-	100	
PAH (Polynuclea	r Aromatic Hydrocarbor	ns) in Soil					M	ethod: ME-(AU)-	-[ENV]AN420
QC Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE183216.001	LB155627.025		Naphthalene	mg/kg	0.1	4.7	<0.1	4	117
			2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	-	-
			1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	-	-

Acenaphthylene

Acenaphthene

Phenanthrene

Fluorene

117

112

108

0.1

0.1

0.1

0.1

mg/kg

mg/kg

mg/kg

mg/kg

4.5

4.3

<0.1

4.7

<0.1

<0.1

<0.1

<0.1

4

4

4

MATRIX SPIKES

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

	ar Aromatic Hydrocarbo				1.00			nod: ME-(AU	
QC Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recover
SE183216.001	LB155627.025		Anthracene	mg/kg	0.1	4.7	<0.1	4	118
			Fluoranthene	mg/kg	0.1	4.7	<0.1	4	117
			Pyrene	mg/kg	0.1	4.9	<0.1	4	122
			Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1	-	-
			Chrysene	mg/kg	0.1	<0.1	<0.1	-	-
			Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	<0.1	-	-
			Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1	-	-
			Benzo(a)pyrene	mg/kg	0.1	4.3	<0.1	4	106
			Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1	-	-
			Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	-	-
			Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1	-	-
			Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td>4.3</td><td><0.2</td><td>-</td><td>-</td></lor=0<>	TEQ (mg/kg)	0.2	4.3	<0.2	-	-
			Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td>4.4</td><td><0.3</td><td>-</td><td>-</td></lor=lor<>	TEQ (mg/kg)	0.3	4.4	<0.3	-	-
			Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td>4.3</td><td><0.2</td><td>-</td><td>-</td></lor=lor>	TEQ (mg/kg)	0.2	4.3	<0.2	-	-
			Total PAH (18)	mg/kg	0.8	37	<0.8	-	-
		Surrogates	d5-nitrobenzene (Surrogate)	mg/kg	-	0.4	0.4	-	76
		Ū	2-fluorobiphenyl (Surrogate)	mg/kg	_	0.5	0.4	-	90
			d14-p-terphenyl (Surrogate)	mg/kg	-	0.5	0.5	-	100
						0.0			
CBs in Soil								nod: ME-(AU)-[ENVJAN
QC Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recove
SE183339.003	LB155627.024		Arochlor 1016	mg/kg	0.2	<0.2	<0.2	-	-
			Arochlor 1221	mg/kg	0.2	<0.2	<0.2	-	-
			Arochlor 1232	mg/kg	0.2	<0.2	<0.2	-	-
			Arochlor 1242	mg/kg	0.2	<0.2	<0.2	-	-
			Arochlor 1248	mg/kg	0.2	<0.2	<0.2	-	-
			Arochlor 1254	mg/kg	0.2	<0.2	<0.2	-	-
			Arochlor 1260	mg/kg	0.2	0.5	<0.2	0.4	124
			Arochlor 1262	mg/kg	0.2	<0.2	<0.2	-	-
			Arochlor 1268	mg/kg	0.2	<0.2	<0.2	-	-
			Total PCBs (Arochlors)	mg/kg	1	<1	<1		-
		Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg		0	0		107
		-		0.0		-		(410 0000	
	le Elements in Soil/Wa	iste Solids/Materi	als by ICPOES				Method: ME		
QC Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recove
SE183339.001	LB155629.004		Arsenic, As	mg/kg	1	54	10	50	87
			Cadmium, Cd	mg/kg	0.3	47	0.3	50	94
			Chromium, Cr	mg/kg	0.3	67	22	50	89
			Copper, Cu	mg/kg	0.5	66	16	50	101
							0.0	50	93
			Nickel, Ni	mg/kg	0.5	56	9.3	50	
			Nickel, Ni Lead, Pb	mg/kg mg/kg	0.5	56	9.3	50	86
				mg/kg					86 103
			Lead, Pb		1	58	15 42	50 50	103
· ·	werable Hydrocarbons) in Soil	Lead, Pb Zinc, Zn	mg/kg mg/kg	1 2	58 93	15 42 Meth	50 50 nod: ME-(AU	103)-[ENV]A M
· ·	werable Hydrocarbons Sample Number) in Soll	Lead, Pb	mg/kg	1	58 93 Result	15 42	50 50	103)-[ENV]A I
QC Sample	-	i) in Soil	Lead, Pb Zinc, Zn	mg/kg mg/kg	1 2	58 93	15 42 Meth	50 50 nod: ME-(AU	103)-[ENV]A Recove
QC Sample	Sample Number	i) in Soil	Lead, Pb Zinc, Zn Parameter	mg/kg mg/kg Units	1 2 LOR	58 93 Result	15 42 Meth Original	50 50 nod: ME-(AL Spike	103 I)-[ENV]AI Recove 118
QC Sample	Sample Number	i) in Soll	Lead, Pb Zinc, Zn Parameter TRH C10-C14	mg/kg mg/kg Units mg/kg	1 2 LOR 20	58 93 Result 47	15 42 Meth Original <20	50 50 nod: ME-(AL Spike 40	103 I)-[ENV]AI Recove 118 98
QC Sample	Sample Number	i) in Soil	Lead, Pb Zinc, Zn Parameter TRH C10-C14 TRH C15-C28	mg/kg mg/kg Units mg/kg mg/kg	1 2 LOR 20 45	58 93 Result 47 <45	15 42 Meth Original <20 <45	50 50 nod: ME-(AL Spike 40 40	103 I)-[ENV]A Recov 118 98
QC Sample	Sample Number	ı) in Soil	Lead, Pb Zinc, Zn Parameter TRH C10-C14 TRH C15-C28 TRH C29-C36	mg/kg mg/kg Units mg/kg mg/kg mg/kg	1 2 LOR 20 45 45	58 93 Result 47 <45 <45	15 42 Meth Original <20 <45 <45	50 50 nod: ME-(AL Spike 40 40 40	103 I)-[ENV]AI Recove 118 98 73
QC Sample	Sample Number	ı) in Soli	Lead, Pb Zinc, Zn Parameter TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40	mg/kg mg/kg Units mg/kg mg/kg mg/kg mg/kg	1 2 20 45 45 100	58 93 Result 47 <45 <45 <100	15 42 Original <20 <45 <45 <100	50 50 nod: ME-(AL Spike 40 40 40 -	103 I)-[ENV]A Recove 118 98 73
QC Sample	Sample Number	i) in Soil	Lead, Pb Zinc, Zn Parameter TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C36 Total	mg/kg mg/kg Units mg/kg mg/kg mg/kg mg/kg mg/kg	1 2 20 45 45 100 110	58 93 Result 47 <45 <45 <100 <110	15 42 Original <20 <45 <45 <100 <110	50 50 nod: ME-(AL Spike 40 40 - -	103 D-[ENV]Al Recove 118 98 73 - - - -
QC Sample	Sample Number		Lead, Pb Zinc, Zn Parameter TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C36 Total TRH C10-C40 Total (F bands)	mg/kg mg/kg Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	1 2 20 45 45 100 110 210	58 93 Result 47 <45 <45 <100 <110 <210	15 42 Original <20 <45 <45 <100 <110 <210	50 50 mod: ME-(AL Spike 40 40 40 - - -	103 D-[ENV]Al Recove 118 98 73 - - -
QC Sample	Sample Number		Lead, Pb Zinc, Zn Parameter TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C36 Total TRH C10-C40 Total (F bands) TRH >C10-C16	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	1 2 20 45 45 100 110 210 25	58 93 Result 47 <45 <45 <100 <110 <210 42	15 42 Original <20 <45 <45 <100 <110 <210 <25	50 50 Nod: ME-(AL Spike 40 40 40 - - - 40	103 I)-[ENV]Al Recovi 118 98 73 - - - - 105 - - - - -
C Sample	Sample Number		Lead, Pb Zinc, Zn Parameter TRH C10-C14 TRH C15-C28 TRH C37-C40 TRH C10-C36 Total TRH C10-C40 Total (F bands) TRH >C10-C16 TRH >C10-C16-C34 (F3)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	1 2 20 45 45 100 110 210 25 25 90	58 93 Result 47 <45 <45 <100 <110 <210 42 42	15 42 Meth 20 <45 <45 <100 <110 <210 <25 <25	50 50 nod: ME-(AL Spike 40 40 - - - - 40 -	103 I)-[ENV]Al Recovi 118 98 73 - - - - 105 - - - - -
QC Sample E183339.002	Sample Number		Lead, Pb Zinc, Zn Parameter TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C36 Total TRH C10-C40 Total (F bands) TRH >C10-C16 TRH >C10-C16 - Naphthalene (F2)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	1 2 20 45 45 100 110 210 25 25	58 93 Result 47 <45 <45 <100 <110 <210 42 42 <90	15 42 Meth Original <20 <45 <45 <100 <110 <210 <25 <25 <25 <80 <120	50 50 nod: ME-(AL Spike 40 40 - - 40 - 40 - 40 -	103 I)-[ENV]AI Recove 118 98 73 - - - - 105 - - 85 - -
C Sample E183339.002	Sample Number LB155627.024		Lead, Pb Zinc, Zn Parameter TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C10-C36 Total TRH C10-C36 Total TRH C10-C40 Total (F bands) TRH >C10-C16 TRH >C10-C16 - Naphthalene (F2) TRH >C16-C34 (F3) TRH >C34-C40 (F4)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	1 2 20 45 45 100 110 210 25 25 90 120	58 93 Result 47 <45 <100 <110 <210 42 42 42 <90 <120	15 42 Original <20 <45 <45 <100 <110 <210 <25 <25 <90 <120 Meth	50 50 mod: ME-(AL 40 40 - - 40 - 40 - 40 - - 40 - 0 -	103)-[ENV]Al Recov 118 98 73 - - 105 - 85 - - 105 - 105 - 105 - 105 - 105 - - 105 - - - - - - - - - - - - -
CC Sample E183339.002	Sample Number		Lead, Pb Zinc, Zn Parameter TRH C10-C14 TRH C15-C28 TRH C37-C40 TRH C10-C36 Total TRH C10-C40 Total (F bands) TRH >C10-C16 TRH >C10-C16-C34 (F3)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	1 2 20 45 45 100 110 210 25 25 90	58 93 Result 47 <45 <45 <100 <110 <210 42 42 <90	15 42 Meth Original <20 <45 <45 <100 <110 <210 <25 <25 <25 <80 <120	50 50 nod: ME-(AL Spike 40 40 - - 40 - 40 - 40 -	103)-[ENV]AI Recove 118 98 73 - - 105 - 85 - 1)-[ENV]AI
QC Sample SE183339.002 DC's in Soil QC Sample	Sample Number LB155627.024		Lead, Pb Zinc, Zn Parameter TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C10-C36 Total TRH C10-C36 Total TRH C10-C40 Total (F bands) TRH >C10-C16 TRH >C10-C16 - Naphthalene (F2) TRH >C16-C34 (F3) TRH >C34-C40 (F4)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	1 2 20 45 45 100 110 210 25 25 90 120	58 93 Result 47 <45 <100 <110 <210 42 42 42 <90 <120	15 42 Original <20 <45 <45 <100 <110 <210 <25 <25 <90 <120 Meth	50 50 mod: ME-(AL 40 40 - - 40 - 40 - 40 - - 40 - 0 -	103)-[ENV]AI Recover 118 98 73 - - 105 - 85 - 105 - 85 - 105 - 85 - 20 - 20 - 20 - - - - - - - - - - - - -
QC Sample SE183339.002 DC's in Soil QC Sample	Sample Number LB155627.024 Sample Number LB155626.004	TRH F Bands	Lead, Pb Zinc, Zn Parameter TRH C10-C14 TRH C10-C28 TRH C29-C36 TRH C10-C36 Total TRH C10-C40 Total (F bands) TRH >C10-C16 TRH >C10-C16-Naphthalene (F2) TRH >C10-C40 (F4)	mg/kg mg/kg Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	1 2 20 45 45 100 110 210 25 25 90 120 LOR	58 93 Result 47 <45 <100 <110 <210 42 42 42 <90 <120 Result	15 42 Original <20 <45 <45 <100 <110 <210 <25 <25 <90 <120 Meth Original	50 50 mod: ME-(AL 40 40 - - 40 - 40 - - 40 - 5 0 KE-(AL Spike	103 I)-[ENV]AI Recove 118 98 73 - - - 105 - 85 - 85
QC Sample SE183339.002 DC's in Soil QC Sample	Sample Number LB155627.024 Sample Number LB155626.004	TRH F Bands	Lead, Pb Zinc, Zn Parameter TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C10-C36 Total TRH C10-C36 Total TRH C10-C40 Total (F bands) TRH >C10-C16 TRH >C10-C16-C34 (F3) TRH >C10-C40 (F4) Parameter Benzene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	1 2 20 45 45 100 110 210 25 25 90 120 LOR 0.1	58 93 Result 47 <45 <45 <100 <110 <210 42 42 42 <90 <120 Result 2.7	15 42 Meth Original <20 <45 <45 <100 <110 <210 <25 <25 <25 <90 <120 Meth Original <0.1	50 50 mod: ME-(AL 5pike 40 - - - 40 - - 40 - - - 0 Spike 2.9	103)-[ENV]AN Recove 98 73 - - 105 - 85 - N)-[ENV]AN Recove 94
RH (Total Recc QC Sample SE183339.002	Sample Number LB155627.024 Sample Number LB155626.004	TRH F Bands	Lead, Pb Zinc, Zn Parameter TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C10-C36 Total TRH C10-C40 Total (F bands) TRH >C10-C16 TRH >C10-C16-C34 (F3) TRH >C10-C40 (F4) Parameter Benzene Toluene	mg/kg mg/kg Units mg/kg mg/kg	1 2 20 45 45 100 110 210 25 25 90 120 LOR 0.1 0.1	58 93 Result 47 <45 <45 <100 <110 <210 42 42 <80 <120 Result 2.7 1.9	15 42 Meth Original <20 <45 <45 <100 <110 <210 <25 <25 <25 <90 <120 Meth Original <0.1 <0.1	50 50 nod: ME-(AL Spike 40 - - - 40 - - 40 - - 40 - - - 40 - - 2,9 2,9 2,9	103)-[ENV]AI Recove 118 98 73 - - - 105 - 85 - - 105 - 85 - - 0)-[ENV]AI Recove 45 - - - - - - - - - - - - -

MATRIX SPIKES

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

QC Sample	Sample Numbe	-	Parameter	Units	LOR	Result	Original	Spike	Recovery
SE183339.001	LB155626.004	Polycyclic	Naphthalene	mg/kg	0.1	<0.1	<0.1	- эріке	Recovery
SE163339.001	LB155626.004	Surrogates	Dibromofluoromethane (Surrogate)	mg/kg		4.1	5.9	-	82
		Surroyates	d4-1,2-dichloroethane (Surrogate)	mg/kg	-	4.1	4.5	-	81
			d8-toluene (Surrogate)	mg/kg	-	4.1	5.4	-	85
			Bromofluorobenzene (Surrogate)	mg/kg		5.6	4.0		112
		Totals	Total Xylenes	mg/kg	0.3	6.1	<0.3		-
		101213	Total BTEX	mg/kg	0.6	13	<0.6	-	_
					0.0	10			
OCs in Water						_		•	J)-[ENV]AN4
QC Sample	Sample Numbe		Parameter	Units	LOR	Result	Original	Spike	Recovery
SE183221.013	LB155745.024	Monocyclic	Benzene	µg/L	0.5	54	<0.5	45.45	118
		Aromatic	Toluene	µg/L	0.5	55	<0.5	45.45	120
			Ethylbenzene	µg/L	0.5	52	<0.5	45.45	115
			m/p-xylene	µg/L	1	95	<1	90.9	105
			o-xylene	µg/L	0.5	48	<0.5	45.45	106
		Polycyclic	Naphthalene	µg/L	0.5	54	<0.5	-	-
		Surrogates	Dibromofluoromethane (Surrogate)	µg/L	-	4.5	4.6	-	90
			d4-1,2-dichloroethane (Surrogate)	µg/L	-	5.2	5.2	-	103
			d8-toluene (Surrogate)	µg/L	-	4.8	4.5	-	96
			Bromofluorobenzene (Surrogate)	µg/L	-	4 7		-	
			Bromonaorobonizono (ourrogato)	P9/L	-	4.7	4.2	-	93
/olatile Petroleu	m Hydrocarbons in §	Soil		μg/L	-	4.7			
/olatile Petroleu QC Sample	m Hydrocarbons in S Sample Numbe		Parameter	Units	LOR	4.7 Result			J)-[ENV]AN4
QC Sample	-						Met	hod: ME-(AL	J)-[ENV]AN4
QC Sample	Sample Numbe		Parameter	Units	LOR	Result	Mett Original	hod: ME-(AL Spike	J)-[ENV]AN4 Recovery
QC Sample	Sample Numbe		Parameter TRH C6-C10	Units mg/kg	LOR 25	Result <25	Mett Original <25	hod: ME-(AL Spike 24.65	J)-[ENV]AN4 Recovery 72
QC Sample	Sample Numbe	r	Parameter TRH C6-C10 TRH C6-C9	Units mg/kg mg/kg	LOR 25 20	Result <25 <20	Met Original <25 <20	hod: ME-(AL Spike 24.65 23.2	J)-[ENV]AN4 Recover 72 73
QC Sample	Sample Numbe	r	Parameter TRH C6-C10 TRH C6-C9 Dibromofluoromethane (Surrogate)	Units mg/kg mg/kg mg/kg	LOR 25 20	Result <25 <20 4.1	Mett Original <25 <20 5.9	hod: ME-(AL Spike 24.65 23.2 -	J)-[ENV]AN4 Recover 72 73 82
QC Sample	Sample Numbe	r	Parameter TRH C6-C10 TRH C6-C9 Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate)	Units mg/kg mg/kg mg/kg mg/kg	LOR 25 20	Result <25 <20 4.1 4.1	Met Original <25 <20 5.9 4.5	hod: ME-(AL Spike 24.65 23.2 -	J)-[ENV]AN4 Recover 72 73 82 81
QC Sample	Sample Numbe	r	Parameter TRH C6-C10 TRH C6-C9 Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate)	Units mg/kg mg/kg mg/kg mg/kg mg/kg	LOR 25 20 - - -	Result <25	Met Original <25 <20 5.9 4.5 5.4	hod: ME-(AL Spike 24.65 23.2 - - -	J)-[ENV]AN4 Recover 72 73 82 81 85
QC Sample	Sample Numbe	Surrogates	Parameter TRH C6-C10 TRH C6-C9 Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate)	Units mg/kg mg/kg mg/kg mg/kg mg/kg	LOR 25 20 - - - -	Result <25	Met Original <25 <20 5.9 4.5 5.4 4.0	hod: ME-(AL Spike 24.65 23.2 - - - - -	J)-[ENV]ANA Recovery 72 73 82 81 85 112
QC Sample SE183339.001	Sample Numbe LB155626.004	Surrogates VPH F Bands	Parameter TRH C6-C10 TRH C6-C9 Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Benzene (F0)	Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	LOR 25 20 - - - - 0.1	Result <25 <20 4.1 4.1 4.2 5.6 2.7	Meth Original <25	hod: ME-(AL Spike 24.65 23.2 - - - - - 7.25	J)-[ENV]AN4 Recover 72 73 82 81 85 112 - 70
QC Sample SE183339.001 /olatile Petroleu	Sample Numbe LB155626.004 m Hydrocarbons in V	Surrogates VPH F Bands Water	Parameter TRH C6-C10 TRH C6-C9 Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Benzene (F0) TRH C6-C10 minus BTEX (F1)	Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	LOR 25 20 - - - - 0.1 25	Result <25	Meth Original <25	hod: ME-(AL Spike 24.65 23.2 - - - - 7.25 hod: ME-(AL	U)-[ENV]ANA Recover 72 73 82 81 85 112 - 70 70 U)-[ENV]ANA
QC Sample SE183339.001 /olatile Petroleu QC Sample	Sample Numbe LB155626.004 m Hydrocarbons in V Sample Numbe	Surrogates VPH F Bands Water	Parameter TRH C6-C10 TRH C6-C9 Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) Bromofluorobenzene (Surrogate) Benzene (F0) TRH C6-C10 minus BTEX (F1)	Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	LOR 25 20 - - - - 0.1 25 LOR	Result <25	Metil Original <25	hod: ME-(AL Spike 24.65 23.2 - - - - 7.25 hod: ME-(AL Spike	J)-[ENV]AN4 Recover 72 73 82 81 85 112 - 70 J)-[ENV]AN4 Recover
QC Sample SE183339.001 /olatile Petroleu QC Sample	Sample Numbe LB155626.004 m Hydrocarbons in V	Surrogates VPH F Bands Water	Parameter TRH C6-C10 TRH C6-C9 Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) Bromofluorobenzene (Surrogate) Benzene (F0) TRH C6-C10 minus BTEX (F1)	Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg Units µg/L	LOR 25 20 - - - 0.1 25 LOR 50	Result <25	Meth Original <25	hod: ME-(AL Spike 24.65 23.2 - - - - 7.25 hod: ME-(AL Spike 946.63	J)-[ENV]AN4 Recover 72 73 82 81 85 112 - 70 J)-[ENV]AN4 Recover 95
QC Sample SE183339.001 /olatile Petroleu QC Sample	Sample Numbe LB155626.004 m Hydrocarbons in V Sample Numbe	Surrogates VPH F Bands Nater	Parameter TRH C6-C10 TRH C6-C9 Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) Bromofluorobenzene (Surrogate) Benzene (F0) TRH C6-C10 minus BTEX (F1) Parameter TRH C6-C10 TRH C6-C10	Units mg/kg mg/kg	LOR 25 20 - - - - 0.1 25 LOR	Result <25	Meth Original <25	hod: ME-(AL Spike 24.65 23.2 - - - - 7.25 hod: ME-(AL Spike	J)-[ENV]AN4 Recovery 72 73 82 81 85 112 - 70 J)-[ENV]AN4 Recovery 95 91
QC Sample SE183339.001 /olatile Petroleu QC Sample	Sample Numbe LB155626.004 m Hydrocarbons in V Sample Numbe	Surrogates VPH F Bands Water	Parameter TRH C6-C10 TRH C6-C9 Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) Bromofluorobenzene (Surrogate) Bromofluorobenzene (Surrogate) Benzene (F0) TRH C6-C10 minus BTEX (F1) Parameter TRH C6-C10 TRH C6-C9 Dibromofluoromethane (Surrogate)	Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg units µg/L µg/L	LOR 25 20 - - - 0.1 25 LOR 50 40	Result <25	Meth Original <25	hod: ME-(AL Spike 24.65 23.2 - - - 7.25 hod: ME-(AL Spike 946.63 818.71	J)-[ENV]AN4 Recover 72 73 82 81 85 112 - 70 J)-[ENV]AN4 Recover 95 91 90
QC Sample SE183339.001 [/] olatile Petroleu QC Sample	Sample Numbe LB155626.004 m Hydrocarbons in V Sample Numbe	Surrogates VPH F Bands Nater	Parameter TRH C6-C10 TRH C6-C9 Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) Bromofluorobenzene (Surrogate) Benzene (F0) TRH C6-C10 minus BTEX (F1) Parameter TRH C6-C10 TRH C6-C9 Dibromofluoromethane (Surrogate)	Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg units µg/L µg/L µg/L µg/L	LOR 25 20 - - - 0.1 25 LOR 50 40 -	Result <25	Meth Original <25	hod: ME-(AL Spike 24.65 23.2 - - - - 7.25 hod: ME-(AL Spike 946.63 818.71 - -	J)-[ENV]AN4 Recover 72 73 82 81 85 112 - 70 J)-[ENV]AN4 Recover 95 91 90 103
QC Sample SE183339.001 /olatile Petroleu QC Sample	Sample Numbe LB155626.004 m Hydrocarbons in V Sample Numbe	Surrogates VPH F Bands Nater	Parameter TRH C6-C10 TRH C6-C9 Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) Bromofluorobenzene (Surrogate) Benzene (F0) TRH C6-C10 TRH C6-C10 TRH C6-C10 TRH C6-C9 Dibromofluoromethane (Surrogate)	Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg units µg/L µg/L µg/L µg/L µg/L	LOR 25 20 - - - 0.1 25 25 - 0.1 25 50 40 - -	Result <25	Meth Original <25	hod: ME-(AL Spike 24.65 23.2 - - - - 7.25 hod: ME-(AL Spike 946.63 818.71 - -	J)-[ENV]AN4 Recover 72 73 82 81 85 112 - 70 J)-[ENV]AN4 Recover 95 91 90 103 96
QC Sample SE183339.001	Sample Numbe LB155626.004 m Hydrocarbons in V Sample Numbe	Surrogates VPH F Bands Nater	Parameter TRH C6-C10 TRH C6-C9 Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) Bromofluorobenzene (Surrogate) Benzene (F0) TRH C6-C10 minus BTEX (F1) Parameter TRH C6-C10 TRH C6-C9 Dibromofluoromethane (Surrogate)	Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg units µg/L µg/L µg/L µg/L	LOR 25 20 - - - 0.1 25 LOR 50 40 -	Result <25	Meth Original <25	hod: ME-(AL Spike 24.65 23.2 - - - - 7.25 hod: ME-(AL Spike 946.63 818.71 - -	J)-[ENV]AN4 Recovery 72 73 82 81 85 112 - 70 J)-[ENV]AN4 Recovery 95 91 90 103

The original result is the analyte concentration of the matrix spike. The Duplicate result is the analyte concentration of the matrix spike duplicate.

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

No matrix spike duplicates were required for this job.

Samples analysed as received.

Solid samples expressed on a dry weight basis.

QC criteria are subject to internal review according to the SGS QA/QC plan and may be provided on request or alternatively can be found here: http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical Documents/MP-AU-ENV-QU-022 QA QC Plan.pdf

- * NATA accreditation does not cover the performance of this service .
- ** Indicative data, theoretical holding time exceeded.
- Sample not analysed for this analyte.
- IS Insufficient sample for analysis.
- LNR Sample listed, but not received.
- LOR Limit of reporting.
- QFH QC result is above the upper tolerance.
- QFL QC result is below the lower tolerance.
- ① At least 2 of 3 surrogates are within acceptance criteria.
- ② RPD failed acceptance criteria due to sample heterogeneity.
- ③ Results less than 5 times LOR preclude acceptance criteria for RPD.
- ④ Recovery failed acceptance criteria due to matrix interference.
- Recovery failed acceptance criteria due to the presence of significant concentration of analyte (i.e. the concentration of analyte exceeds the spike level).
- 6 LOR was raised due to sample matrix interference.
- O LOR was raised due to dilution of significantly high concentration of analyte in sample.
- Image:
- Recovery failed acceptance criteria due to sample heterogeneity.
- [®] LOR was raised due to high conductivity of the sample (required dilution).
- t Refer to Analytical Report comments for further information.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sqs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This test report shall not be reproduced, except in full.

CHAIN OF CUSTODY RECORD

LAB Name	SGS	
Address	16/33 Maddox St	
	Alexandria NSW 20	15
Client	Cardno (NSW/ACT)	Pty Ltd
	PO Box 74	
	Broadmeadow	NSW 2292
Contact	Daniel McCallum	
Sampled by	Daniel McCallum	
Project Ref:	82219014	

Contact Numbers Phone

 Phone
 0249 654555

 Fax
 0249 654666

E-mail daniel.mccallum@cardno.com.au dimce.stojanvoski@cardno.com.au

(invoice to geotech@cardno.com.au)

Date Results Required Standard TAT

			Ma	ıtrix			C	ontaine	ers/Pre	serva	tion				A	nalysis	Require	ed		
Laboratory LIMS ID	Client Sample ID	Date Sampled	Soil	Water	Soil Jar (G) Nat. Orange	0.5-1.0 litre (G) Nat. Yellow	0.1-1.0 litre (P) Nat. Green	50mL VOA Vial (G) H ₂ SO4 Maroon	0.1-1.0 litre (P) H ₂ SO ₄ Maroon	0.2-1.0 litre (G) H ₂ SO ₄ Maroon	0.1-0.2 (P) Filtered?? Y=Yes, N=No (HNO3) Red	0.21 (P) NaOH Blue	Other	CL17	Asbestos ID					
	TP203 04 0. 4 -0.3	24/08/2018	×		0)	07	00	I CO L	0 2	0 2	OFE	0		×	X					
		1.00.2010																		
									<u> </u>											
								-	<u> </u>								-			
							-													
																t s	GS EH	S Alex	andri	a Laboratory
																↓ ∥				
									-							∔ ∥∣				
				-			-	-								† ∥				
																C	E10	3321	10 0	201
																	DEIC	552		
																L R	eceive	ed: 29	– Aug	-2018
						-										ł				
										-						ł				
				-			<u> </u>	-												
									1											
Released by: Received by:	Daniel McCallum	Signature Signature	N.			Date/T Date/T	ime 2 ime 2	3/8/	120	0	530	Custo	dy Sea	ls Intac	t? / Sar	mples R	eceived	d Chilled	1?	

ANALYTICAL REPORT

CLIENT DETAIL	S	LABORATORY DE	TAILS
Contact	Daniel McCallum	Manager	Huong Crawford
Client	CARDNO (NSW/ACT) PTY LTD	Laboratory	SGS Alexandria Environmental
Address	Unit 1 10 Denney Street Broadmeadow NSW 2292	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone Facsimile Email	61 2 4965 4555 61 2 4965 4666 daniel.mccallum@cardno.com.au	Telephone Facsimile Email	+61 2 8594 0400 +61 2 8594 0499 au.environmental.sydney@sgs.com
Project Drder Number Samples	82219014 (Not specified) 1	SGS Reference Date Received Date Reported	SE183218 R0 29/8/2018 5/9/2018

COMMENTS

Accredited for compliance with ISO/IEC 17025 - Testing. NATA accredited laboratory 2562(4354).

No respirable fibres detected in all soil samples using trace analysis technique.

A portion of the sample supplied has been sub-sampled for asbestos according to SGS In-house procedures. We therefore cannot guarantee that the sub-sample is representative of the entire sample supplied. SGS Environmental Services recommends supplying approximately 50-100g of sample in a separate container.

Asbestos analysed by Approved Identifier Yusuf Kuthpudin.

SIGNATORIES

Akheeqar Beniameen Chemist

kinter

Ly Kim Ha Organic Section Head

Bennet Lo Senior Organic Chemist/Metals Chemist

S. Ravendr.

Ravee Sivasubramaniam Hygiene Team Leader

Kamrul Ahsan Senior Chemist

ions

Shane McDermott Inorganic/Metals Chemist

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australia t +61 2 8594 0400 Australia f +61 2 8594 0499

VOC's in Soil [AN433] Tested: 3/9/2018

PARAMETER	UOM	LOR	TP203 0.4-0.5 SOIL - 24/8/2018 SE183218.001
Benzene	mg/kg	0.1	<0.1
Toluene	mg/kg	0.1	<0.1
Ethylbenzene	mg/kg	0.1	<0.1
m/p-xylene	mg/kg	0.2	<0.2
o-xylene	mg/kg	0.1	<0.1
Total Xylenes	mg/kg	0.3	<0.3
Total BTEX	mg/kg	0.6	<0.6
Naphthalene	mg/kg	0.1	<0.1

Volatile Petroleum Hydrocarbons in Soil [AN433] Tested: 3/9/2018

			TP203 0.4-0.5
			SOIL -
PARAMETER	UOM	LOR	24/8/2018 SE183218.001
TRH C6-C9	mg/kg	20	<20
Benzene (F0)	mg/kg	0.1	<0.1
TRH C6-C10	mg/kg	25	<25
TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25

TRH (Total Recoverable Hydrocarbons) in Soil [AN403] Tested: 3/9/2018

			TP203 0.4-0.5 SOIL - 24/8/2018
PARAMETER	UOM	LOR	SE183218.001
TRH C10-C14	mg/kg	20	<20
TRH C15-C28	mg/kg	45	<45
TRH C29-C36	mg/kg	45	<45
TRH C37-C40	mg/kg	100	<100
TRH >C10-C16	mg/kg	25	<25
TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	<25
TRH >C16-C34 (F3)	mg/kg	90	<90
TRH >C34-C40 (F4)	mg/kg	120	<120
TRH C10-C36 Total	mg/kg	110	<110
TRH C10-C40 Total (F bands)	mg/kg	210	<210

ANALYTICAL RESULTS

PAH (Polynuclear Aromatic Hydrocarbons) in Soil [AN420] Tested: 3/9/2018

			TP203 0.4-0.5
			SOIL -
PARAMETER	UOM	LOR	24/8/2018 SE183218.001
Naphthalene	mg/kg	0.1	<0.1
2-methylnaphthalene	mg/kg	0.1	<0.1
1-methylnaphthalene	mg/kg	0.1	<0.1
Acenaphthylene	mg/kg	0.1	<0.1
Acenaphthene	mg/kg	0.1	<0.1
Fluorene	mg/kg	0.1	<0.1
Phenanthrene	mg/kg	0.1	<0.1
Anthracene	mg/kg	0.1	<0.1
Fluoranthene	mg/kg	0.1	<0.1
Pyrene	mg/kg	0.1	<0.1
Benzo(a)anthracene	mg/kg	0.1	<0.1
Chrysene	mg/kg	0.1	<0.1
Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1
Benzo(k)fluoranthene	mg/kg	0.1	<0.1
Benzo(a)pyrene	mg/kg	0.1	<0.1
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1
Dibenzo(ah)anthracene	mg/kg	0.1	<0.1
Benzo(ghi)perylene	mg/kg	0.1	<0.1
Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td></lor=0<>	TEQ (mg/kg)	0.2	<0.2
Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td><0.3</td></lor=lor<>	TEQ (mg/kg)	0.3	<0.3
Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td></lor=lor>	TEQ (mg/kg)	0.2	<0.2
Total PAH (18)	mg/kg	0.8	<0.8
Total PAH (NEPM/WHO 16)	mg/kg	0.8	<0.8

SE183218 R0

OC Pesticides in Soil [AN420] Tested: 3/9/2018

PARAMETER UOM LOR 23/18/2018 Hexachlorobenzene (HCB) mg/kg 0.1 <0.1 Alpha BHC mg/kg 0.1 <0.1 Lindane mg/kg 0.1 <0.1 Hexachlorobenzene (HCB) mg/kg 0.1 <0.1 Lindane mg/kg 0.1 <0.1 Heptachlor mg/kg 0.1 <0.1 Adrin mg/kg 0.1 <0.1 Beta BHC mg/kg 0.1 <0.1 Delta BHC mg/kg 0.1 <0.1 Implaction epoxide mg/kg 0.1 <0.1 op'DDE mg/kg 0.1 <0.1 Alpha Endosulfan mg/kg 0.1 <0.1 Apha Chlordane mg/kg 0.1 <0.1 Apha Chlordane mg/kg 0.1 <0.1 p.p'DDE mg/kg 0.1 <0.1 p.p'DDD mg/kg 0.1 <0.1 p.p'DDD mg/kg 0.1 <0.1 <th></th> <th></th> <th></th> <th>TP203 0.4-0.5</th>				TP203 0.4-0.5
PARAMETER UOM LOR 24/4/2016 SET/83218.001 Hexachlorobenzene (HCB) mg/kg 0.1 <0.1				SOIL
PARAMETER UOM LOR SEE83218.001 Hexachlorobenzene (HCB) mg/kg 0.1 <0.1				
Hexachlorobenzene (HCB) mg/kg 0.1 <0.1 Alpha BHC mg/kg 0.1 <0.1				
Alpha BHC mg/kg 0.1 <0.1 Lindane mg/kg 0.1 <0.1				
Indane mg/kg 0.1 <0.1 Heptachlor mg/kg 0.1 <0.1				
Heptachlor mg/kg 0.1 <0.1 Aldrin mg/kg 0.1 <0.1				
Aldrin mg/kg 0.1 Aldrin mg/kg 0.1 <0.1	Lindane	mg/kg		
Beta BHC mg/kg 0.1 <0.1 Delta BHC mg/kg 0.1 <0.1	Heptachlor	mg/kg	0.1	<0.1
Delta BHC mg/kg 0.1 <0.1 Heptachlor epoxide mg/kg 0.1 <0.1	Aldrin	mg/kg	0.1	<0.1
Heptachlor epoxide mg/kg 0.1 <0.1 o,p'-DDE mg/kg 0.1 <0.1	Beta BHC	mg/kg	0.1	<0.1
non-transmission no-transmission no-transmission o,p'-DDE mg/kg 0.1 <0.1	Delta BHC	mg/kg	0.1	<0.1
Alpha Endosulfan mg/kg 0.2 <0.2 Gamma Chlordane mg/kg 0.1 <0.1	Heptachlor epoxide	mg/kg	0.1	<0.1
Gamma Chlordane mg/kg 0.1 <0.1 Alpha Chlordane mg/kg 0.1 <0.1	o,p'-DDE	mg/kg	0.1	<0.1
Alpha Chlordane mg/kg 0.1 <0.1 trans-Nonachlor mg/kg 0.1 <0.1	Alpha Endosulfan	mg/kg	0.2	<0.2
mg/kg 0.1 <0.1 p.p'-DDE mg/kg 0.1 <0.1	Gamma Chlordane	mg/kg	0.1	<0.1
p.p-DDE mg/kg 0.1 <0.1 Dieldrin mg/kg 0.2 <0.2	Alpha Chlordane	mg/kg	0.1	<0.1
Dieldrin mg/kg 0.2 <0.2 Endrin mg/kg 0.2 <0.2	trans-Nonachlor	mg/kg	0.1	<0.1
Endrin mg/kg 0.2 <0.2 o,p'-DDD mg/kg 0.1 <0.1	p,p'-DDE	mg/kg	0.1	<0.1
o,p'-DDD mg/kg 0.1 <0.1	Dieldrin	mg/kg	0.2	<0.2
ng/kg 0.1 <0.1 Beta Endosulfan mg/kg 0.2 <0.2	Endrin	mg/kg	0.2	<0.2
Beta Endosulfan mg/kg 0.2 <0.2 p,p'-DDD mg/kg 0.1 <0.1	o,p'-DDD	mg/kg	0.1	<0.1
Ingris Ingris<	o,p'-DDT	mg/kg	0.1	<0.1
mg/kg 0.1 <0.1 Endosulfan sulphate mg/kg 0.1 <0.1	Beta Endosulfan	mg/kg	0.2	<0.2
Image: Market	p,p'-DDD	mg/kg	0.1	<0.1
Endrin Aldehyde mg/kg 0.1 <0.1 Methoxychlor mg/kg 0.1 <0.1	p,p'-DDT	mg/kg	0.1	<0.1
Endrin Aldehyde mg/kg 0.1 <0.1 Methoxychlor mg/kg 0.1 <0.1	Endosulfan sulphate	mg/kg	0.1	<0.1
Methoxychlor mg/kg 0.1 <0.1 Endrin Ketone mg/kg 0.1 <0.1	Endrin Aldehyde	mg/kg	0.1	<0.1
Isodrin mg/kg 0.1 <0.1 Mirex mg/kg 0.1 <0.1	Methoxychlor	mg/kg	0.1	<0.1
Mirex mg/kg 0.1 <0.1	Endrin Ketone	mg/kg	0.1	<0.1
Mirex mg/kg 0.1 <0.1	Isodrin	mg/kg	0.1	<0.1
	Mirex		0.1	<0.1
rotar our resticides mg/kg 1 <1	Total CLP OC Pesticides	mg/kg	1	<1

OP Pesticides in Soil [AN420] Tested: 3/9/2018

			TP203 0.4-0.5 SOIL -
PARAMETER	UOM	LOR	24/8/2018
			SE183218.001
Dichlorvos	mg/kg	0.5	<0.5
Dimethoate	mg/kg	0.5	<0.5
Diazinon (Dimpylate)	mg/kg	0.5	<0.5
Fenitrothion	mg/kg	0.2	<0.2
Malathion	mg/kg	0.2	<0.2
Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2
Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2
Bromophos Ethyl	mg/kg	0.2	<0.2
Methidathion	mg/kg	0.5	<0.5
Ethion	mg/kg	0.2	<0.2
Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2
Total OP Pesticides*	mg/kg	1.7	<1.7

PCBs in Soil [AN420] Tested: 3/9/2018

PARAMETER	UOM	LOR	TP203 0.4-0.5 SOIL - 24/8/2018 SE183218.001
Arochlor 1016	mg/kg	0.2	<0.2
Arochlor 1221	mg/kg	0.2	<0.2
Arochlor 1232	mg/kg	0.2	<0.2
Arochlor 1242	mg/kg	0.2	<0.2
Arochlor 1248	mg/kg	0.2	<0.2
Arochlor 1254	mg/kg	0.2	<0.2
Arochlor 1260	mg/kg	0.2	<0.2
Arochlor 1262	mg/kg	0.2	<0.2
Arochlor 1268	mg/kg	0.2	<0.2
Total PCBs (Arochlors)	mg/kg	1	<1

ANALYTICAL RESULTS

Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES [AN040/AN320] Tested: 3/9/2018

			TP203 0.4-0.5
			SOIL
			- 24/8/2018
PARAMETER	UOM	LOR	SE183218.001
Arsenic, As	mg/kg	1	5
Cadmium, Cd	mg/kg	0.3	0.4
Chromium, Cr	mg/kg	0.3	4.1
Copper, Cu	mg/kg	0.5	9.8
Lead, Pb	mg/kg	1	16
Nickel, Ni	mg/kg	0.5	1.1
Zinc, Zn	mg/kg	2	150

Mercury in Soil [AN312] Tested: 3/9/2018

			TP203 0.4-0.5
			SOIL
			- 24/8/2018
PARAMETER	UOM	LOR	SE183218.001
Mercury	mg/kg	0.05	<0.05

Moisture Content [AN002] Tested: 3/9/2018

		TP203 0.4-0.5
		SOIL
		-
ЦОМ	LOR	24/8/2018 SE183218.001
		11
	UOM %w/w	

Fibre Identification in soil [AN602] Tested: 4/9/2018

			TP203 0.4-0.5
			SOIL
			- 24/8/2018
PARAMETER	UOM	LOR	SE183218.001
Asbestos Detected	No unit	-	No
Estimated Fibres*	%w/w	0.01	<0.01

METHOD	METHODOLOGY SUMMARY
AN002	The test is carried out by drying (at either 40°C or 105°C) a known mass of sample in a weighed evaporating basin. After fully dry the sample is re-weighed. Samples such as sludge and sediment having high percentages of moisture will take some time in a drying oven for complete removal of water.
AN040/AN320	A portion of sample is digested with nitric acid to decompose organic matter and hydrochloric acid to complete the digestion of metals. The digest is then analysed by ICP OES with metals results reported on the dried sample basis. Based on USEPA method 200.8 and 6010C.
AN040	A portion of sample is digested with Nitric acid to decompose organic matter and Hydrochloric acid to complete the digestion of metals and then filtered for analysis by ASS or ICP as per USEPA Method 200.8.
AN312	Mercury by Cold Vapour AAS in Soils: After digestion with nitric acid, hydrogen peroxide and hydrochloric acid, mercury ions are reduced by stannous chloride reagent in acidic solution to elemental mercury. This mercury vapour is purged by nitrogen into a cold cell in an atomic absorption spectrometer or mercury analyser. Quantification is made by comparing absorbances to those of the calibration standards. Reference APHA 3112/3500
AN403	Total Recoverable Hydrocarbons: Determination of Hydrocarbons by gas chromatography after a solvent extraction. Detection is by flame ionisation detector (FID) that produces an electronic signal in proportion to the combustible matter passing through it. Total Recoverable Hydrocarbons (TRH) are routinely reported as four alkane groupings based on the carbon chain length of the compounds: C6-C9, C10-C14, C15-C28 and C29-C36 and in recognition of the NEPM 1999 (2013), >C10-C16 (F2), >C16-C34 (F3) and >C34-C40 (F4). F2 is reported directly and also corrected by subtracting Naphthalene (from VOC method AN433) where available.
AN403	Additionally, the volatile C6-C9 fraction may be determined by a purge and trap technique and GC/MS because of the potential for volatiles loss. Total Petroleum Hydrocarbons (TPH) follows the same method of analysis after silica gel cleanup of the solvent extract. Aliphatic/Aromatic Speciation follows the same method of analysis after fractionation of the solvent extract over silica with differential polarity of the eluent solvents.
AN403	The GC/FID method is not well suited to the analysis of refined high boiling point materials (ie lubricating oils or greases) but is particularly suited for measuring diesel, kerosene and petrol if care to control volatility is taken. This method will detect naturally occurring hydrocarbons, lipids, animal fats, phenols and PAHs if they are present at sufficient levels, dependent on the use of specific cleanup/fractionation techniques. Reference USEPA 3510B, 8015B.
AN420	(SVOCs) including OC, OP, PCB, Herbicides, PAH, Phthalates and Speciated Phenols (etc) in soils, sediments and waters are determined by GCMS/ECD technique following appropriate solvent extraction process (Based on USEPA 3500C and 8270D).
AN420	SVOC Compounds: Semi-Volatile Organic Compounds (SVOCs) including OC, OP, PCB, Herbicides, PAH, Phthalates and Speciated Phenols in soils, sediments and waters are determined by GCMS/ECD technique following appropriate solvent extraction process (Based on USEPA 3500C and 8270D).
AN433	VOCs and C6-C9 Hydrocarbons by GC-MS P&T: VOC's are volatile organic compounds. The sample is presented to a gas chromatograph via a purge and trap (P&T) concentrator and autosampler and is detected with a Mass Spectrometer (MSD). Solid samples are initially extracted with methanol whilst liquid samples are processed directly. References: USEPA 5030B, 8020A, 8260.
AN602	Qualitative identification of chrysotile, amosite and crocidolite in bulk samples by polarised light microscopy (PLM) in conjunction with dispersion staining (DS). AS4964 provides the basis for this document. Unequivocal identification of the asbestos minerals present is made by obtaining sufficient diagnostic `clues`, which provide a reasonable degree of certainty, dispersion staining is a mandatory `clue` for positive identification. If sufficient `clues` are absent, then positive identification of asbestos is not possible. This procedure requires removal of suspect fibres/bundles from the sample which cannot be returned.
AN602	Fibres/material that cannot be unequivocably identified as one of the three asbestos forms, will be reported as unknown mineral fibres (umf) The fibres detected may or may not be asbestos fibres.
AN602	AS4964.2004 Method for the Qualitative Identification of Asbestos in Bulk Samples, Section 8.4, Trace Analysis Criteria, Note 4 states:"Depending upon sample condition and fibre type, the detection limit of this technique has been found to lie generally in the range of 1 in 1,000 to 1 in 10,000 parts by weight, equivalent to 1 to 0.1 g/kg."
AN602	The sample can be reported "no asbestos found at the reporting limit of 0.1 g/kg" (<0.01%w/w) where AN602 section 4.5 of this method has been followed, and if-
	 (a) no trace asbestos fibres have been detected (i.e. no 'respirable' fibres): (b) the estimated weight of non-respirable asbestos fibre bundles and/or the estimated weight of asbestos in asbestos-containing materials are found to be less than 0.1g/kg: and (c) these non-respirable asbestos fibre bundles and/or the asbestos containing materials are only visible under stereo-microscope viewing conditions.

FOOTNOTES

 * NATA accreditation does not cover the performance of this service.
 ** Indicative data, theoretical holding time exceeded Not analysed.
 NVL Not validated.
 IS Insufficient sample for analysis.
 LNR Sample listed, but not received.

UOM Unit of Measure. LOR Limit of Reporting. ↑↓ Raised/lowered Limit of Reporting.

Samples analysed as received. Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calculated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

Note that in terms of units of radioactivity:

- a. 1 Bq is equivalent to 27 pCi
- b. 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929.

The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here : http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical%20Documents/MP-AU-ENV-QU-022%20QA%20QC%20Plan.pdf

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sqs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This report must not be reproduced, except in full.

ANALYTICAL REPORT

CLIENT DETAILS		LABORATORY DETAI	LS	
Contact	Daniel McCallum	Manager	Huong Crawford	
Client	CARDNO (NSW/ACT) PTY LTD	Laboratory	SGS Alexandria Environmental	
Address	Unit 1 10 Denney Street Broadmeadow NSW 2292	Address	Unit 16, 33 Maddox St Alexandria NSW 2015	
Telephone	61 2 4965 4555	Telephone	+61 2 8594 0400	
Facsimile	61 2 4965 4666	Facsimile	+61 2 8594 0499	
Email	daniel.mccallum@cardno.com.au	Email	au.environmental.sydney@sgs.com	
Project	82219014	SGS Reference	SE183218 R0	
Order Number	(Not specified)	Date Received	29 Aug 2018	
Samples	1	Date Reported	05 Sep 2018	

COMMENTS -

Accredited for compliance with ISO/IEC 17025 - Testing. NATA accredited laboratory 2562(4354).

No respirable fibres detected in all soil samples using trace analysis technique.

A portion of the sample supplied has been sub-sampled for asbestos according to SGS In-house procedures. We therefore cannot guarantee that the sub-sample is representative of the entire sample supplied. SGS Environmental Services recommends supplying approximately 50-100g of sample in a separate container.

Asbestos analysed by Approved Identifier Yusuf Kuthpudin.

SIGNATORIES

Akheeqar Beniameen Chemist

kmln

Ly Kim Ha Organic Section Head

Bennet Lo Senior Organic Chemist/Metals Chemis

S. Ravender.

Ravee Sivasubramaniam Hygiene Team Leader

Kamrul Ahsan Senior Chemist

hone

Shane McDermott Inorganic/Metals Chemist

Australia

Australia

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 t +61 2 8594 0400 f +61 2 8594 0499

Member of the SGS Group

www.sgs.com.au

ANALYTICAL REPORT

Fibre Identifica	tion in soil				Method	AN602
Laboratory Reference	Client Reference	Matrix	Sample Description	Date Sampled	Fibre Identification	Est.%w/w*
SE183218.001	TP203 0.4-0.5	Soil	41g Sand,Soil,Rocks	24 Aug 2018	No Asbestos Found Synthetic Mineral Fibres Detected Organic Fibres Detected	<0.01

METHOD SUMMARY

METHOD	METHODOLOGY SUMMARY
AN602	Qualitative identification of chrysotile, amosite and crocidolite in bulk samples by polarised light microscopy (PLM) in conjunction with dispersion staining (DS). AS4964 provides the basis for this document. Unequivocal identification of the asbestos minerals present is made by obtaining sufficient diagnostic `clues`, which provide a reasonable degree of certainty, dispersion staining is a mandatory `clue` for positive identification. If sufficient `clues` are absent, then positive identification of asbestos is not possible. This procedure requires removal of suspect fibres/bundles from the sample which cannot be returned.
AN602	Fibres/material that cannot be unequivocably identified as one of the three asbestos forms, will be reported as unknown mineral fibres (umf) The fibres detected may or may not be asbestos fibres.
AN602	AS4964.2004 Method for the Qualitative Identification of Asbestos in Bulk Samples, Section 8.4, Trace Analysis Criteria, Note 4 states: "Depending upon sample condition and fibre type, the detection limit of this technique has been found to lie generally in the range of 1 in 1,000 to 1 in 10,000 parts by weight, equivalent to 1 to 0.1 g/kg."
AN602	The sample can be reported "no asbestos found at the reporting limit of 0.1 g/kg" (<0.01%w/w) where AN602 section 4.5 of this method has been followed, and if-
	 (a) no trace asbestos fibres have been detected (i.e. no 'respirable' fibres): (b) the estimated weight of non-respirable asbestos fibre bundles and/or the estimated weight of asbestos in asbestos-containing materials are found to be less than 0.1g/kg: and (c) these non-respirable asbestos fibre bundles and/or the asbestos containing materials are only visible under stereo-microscope viewing conditions.

Amosite Brown Asbestos NA Not Analysed White Asbestos Chrysotile INR --Listed. Not Required Crocidolite Blue Asbestos * -NATA accreditation does not cover the performance of this service . ** Amosite and/or Crocidolite Indicative data, theoretical holding time exceeded. Amphiboles

(In reference to soil samples only) This report does not comply with the analytical reporting recommendations in the Western Australian Department of Health Guidelines for the Assessment and Remediation and Management of Asbestos Contaminated sites in Western Australia - May 2009.

Sampled by the client.

FOOTNOTES -

Where reported: 'Asbestos Detected': Asbestos detected by polarised light microscopy, including dispersion staining. Where reported: 'No Asbestos Found': No Asbestos Found by polarised light microscopy, including dispersion staining. Where reported: 'UMF Detected': Mineral fibres of unknown type detected by polarised light microscopy, including dispersion staining. Confirmation by another independent analytical technique may be necessary.

Even after disintegration it can be very difficult, or impossible, to detect the presence of asbestos in some asbestos -containing bulk materials using polarised light microscopy. This is due to the low grade or small length or diameter of asbestos fibres present in the material, or to the fact that very fine fibres have been distributed intimately throughout the materials.

The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here : http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical%20Documents/MP-AU-ENV-QU-022%20QA%20QC%20Plan.pdf

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This test report shall not be reproduced, except in full.

STATEMENT OF QA/QC PERFORMANCE

CLIENT DETAILS		LABORATORY DETAI	ILS
Contact	Daniel McCallum	Manager	Huong Crawford
Client	CARDNO (NSW/ACT) PTY LTD	Laboratory	SGS Alexandria Environmental
Address	Unit 1 10 Denney Street Broadmeadow NSW 2292	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	61 2 4965 4555	Telephone	+61 2 8594 0400
Facsimile	61 2 4965 4666	Facsimile	+61 2 8594 0499
Email	daniel.mccallum@cardno.com.au	Email	au.environmental.sydney@sgs.com
Project	82219014	SGS Reference	SE183218 R0
Order Number	(Not specified)	Date Received	29 Aug 2018
Samples	1	Date Reported	05 Sep 2018

COMMENTS

All the laboratory data for each environmental matrix was compared to SGS' stated Data Quality Objectives (DQO). Comments arising from the comparison were made and are reported below.

The data relating to sampling was taken from the Chain of Custody document and was supplied by the Client. This QA/QC Statement must be read in conjunction with the referenced Analytical Report. The Statement and the Analytical Report must not be reproduced except in full.

All Data Quality Objectives were met (within the SGS Alexandria Environmental laboratory).

SAMPLE SUMMARY

Samples clearly labelled Sample container provider Samples received in correct containers Date documentation received Samples received in good order Sample temperature upon receipt Turnaround time requested

Yes SGS Yes 30/8/2018 Yes 6.1°C Standard

Unit 16 33 Maddox St

Complete documentation received Sample cooling method Sample counts by matrix Type of documentation received Samples received without headspace Sufficient sample for analysis

Yes Ice Bricks 1 Soil COC Yes Yes

SGS Australia Pty Ltd ABN 44 000 964 278

Environment, Health and Safety

Alexandria NSW 2015 PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Australia Australia

t +61 2 8594 0400 www.sgs.com.au f +61 2 8594 0499

Member of the SGS Group

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

Fibre Identification in soil							Method:	ME-(AU)-[ENV]AN6
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
TP203 0.4-0.5	SE183218.001	LB155838	24 Aug 2018	29 Aug 2018	24 Aug 2019	04 Sep 2018	24 Aug 2019	05 Sep 2018
lercury in Soil							Method:	ME-(AU)-[ENV]AN3
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
TP203 0.4-0.5	SE183218.001	LB155658	24 Aug 2018	29 Aug 2018	21 Sep 2018	03 Sep 2018	21 Sep 2018	05 Sep 2018
loisture Content							Method:	ME-(AU)-[ENV]AN(
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
TP203 0.4-0.5	SE183218.001	LB155654	24 Aug 2018	29 Aug 2018	07 Sep 2018	03 Sep 2018	08 Sep 2018	04 Sep 2018
C Pesticides in Soil							Method:	ME-(AU)-[ENV]AN4
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
TP203 0.4-0.5	SE183218.001	LB155656	24 Aug 2018	29 Aug 2018	07 Sep 2018	03 Sep 2018	13 Oct 2018	05 Sep 2018
P Pesticides in Soil							Method:	ME-(AU)-[ENV]AN4
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
TP203 0.4-0.5	SE183218.001	LB155656	24 Aug 2018	29 Aug 2018	07 Sep 2018	03 Sep 2018	13 Oct 2018	05 Sep 2018
AH (Polynuclear Aromatic	c Hydrocarbons) in Soil						Method:	ME-(AU)-[ENV]AN-
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
TP203 0.4-0.5	SE183218.001	LB155656	24 Aug 2018	29 Aug 2018	07 Sep 2018	03 Sep 2018	13 Oct 2018	05 Sep 2018
CBs in Soil							Method:	ME-(AU)-[ENV]AN4
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
TP203 0.4-0.5	SE183218.001	LB155656	24 Aug 2018	29 Aug 2018	07 Sep 2018	03 Sep 2018	13 Oct 2018	05 Sep 2018
otal Recoverable Elemen	ts in Soil/Waste Solids/Ma	terials by ICPOES					Method: ME-(AU)-IENVIAN040/AN3
	nts in Soil/Waste Solids/Ma	-	Sampled	Received	Extraction Due	Extracted	•	I)-[ENV]AN040/AN3 Analysed
Sample Name	n <mark>ts in Soil/Waste Solids/Ma</mark> Sample No. SE183218.001	terials by ICPOES QC Ref LB155657	Sampled 24 Aug 2018	Received 29 Aug 2018	Extraction Due 20 Feb 2019	Extracted 03 Sep 2018	Method: ME-(AU Analysis Due 20 Feb 2019	I)-[ENV]AN040/AN3 Analysed 04 Sep 2018
Sample Name IP203 0.4-0.5	Sample No. SE183218.001	QC Ref					Analysis Due 20 Feb 2019	Analysed 04 Sep 2018
Sample Name TP203 0.4-0.5 <mark>RH (Total Recoverable H</mark>	Sample No. SE183218.001 Iydrocarbons) in Soll	QC Ref LB155657	24 Aug 2018	29 Aug 2018	20 Feb 2019	03 Sep 2018	Analysis Due 20 Feb 2019 Method:	Analysed 04 Sep 2018 ME-(AU)-[ENV]AN4
Sample Name IP203 0.4-0.5 RH (Total Recoverable H Sample Name	Sample No. SE183218.001 Iydrocarbons) in Soll Sample No.	QC Ref LB155657 QC Ref	24 Aug 2018 Sampled	29 Aug 2018 Received	20 Feb 2019 Extraction Due	03 Sep 2018 Extracted	Analysis Due 20 Feb 2019 Method: Analysis Due	Analysed 04 Sep 2018 ME-(AU)-[ENV]AN4 Analysed
Sample Name IP203 0.4-0.5 RH (Total Recoverable H Sample Name	Sample No. SE183218.001 Iydrocarbons) in Soll	QC Ref LB155657	24 Aug 2018	29 Aug 2018	20 Feb 2019	03 Sep 2018	Analysis Due 20 Feb 2019 Method:	Analysed 04 Sep 2018 ME-(AU)-[ENV]AN
Sample Name IP203 0.4-0.5 RH (Total Recoverable H Sample Name IP203 0.4-0.5	Sample No. SE183218.001 Iydrocarbons) in Soll Sample No.	QC Ref LB155657 QC Ref	24 Aug 2018 Sampled	29 Aug 2018 Received	20 Feb 2019 Extraction Due	03 Sep 2018 Extracted	Analysis Due 20 Feb 2019 Method: Analysis Due 13 Oct 2018	Analysed 04 Sep 2018 ME-(AU)-[ENV]AN Analysed 05 Sep 2018
Sample Name IP203 0.4-0.5 RH (Total Recoverable H Sample Name IP203 0.4-0.5 OC's in Soli	Sample No. SE183218.001 Iydrocarbons) in Soll Sample No.	QC Ref LB155657 QC Ref	24 Aug 2018 Sampled	29 Aug 2018 Received	20 Feb 2019 Extraction Due	03 Sep 2018 Extracted	Analysis Due 20 Feb 2019 Method: Analysis Due 13 Oct 2018	Analysed 04 Sep 2018 ME-(AU)-[ENV]AN Analysed
Sample Name IP203 0.4-0.5 RH (Total Recoverable H Sample Name IP203 0.4-0.5 OC's in Soli Sample Name	Sample No. SE183218.001 Iydrocarbons) in Soll Sample No. SE183218.001	QC Ref LB155657 QC Ref LB155656	24 Aug 2018 Sampled 24 Aug 2018	29 Aug 2018 Received 29 Aug 2018	20 Feb 2019 Extraction Due 07 Sep 2018	03 Sep 2018 Extracted 03 Sep 2018	Analysis Due 20 Feb 2019 Method: Analysis Due 13 Oct 2018 Method:	Analysed 04 Sep 2018 ME-(AU)-[ENV]AN Analysed 05 Sep 2018 ME-(AU)-[ENV]AN
Sample Name TP203 0.4-0.5 RH (Total Recoverable H Sample Name TP203 0.4-0.5 OC's in Soil Sample Name TP203 0.4-0.5	Sample No. SE183218.001 Iydrocarbons) in Soll Sample No. SE183218.001 Sample No. SE183218.001	QC Ref LB155657 QC Ref LB155656	24 Aug 2018 Sampled 24 Aug 2018 Sampled	29 Aug 2018 Received 29 Aug 2018 Received	20 Feb 2019 Extraction Due 07 Sep 2018 Extraction Due	03 Sep 2018 Extracted 03 Sep 2018 Extracted	Analysis Due 20 Feb 2019 Method: Analysis Due 13 Oct 2018 Method: Analysis Due 13 Oct 2018	Analysed 04 Sep 2018 ME-(AU)-[ENV]AN Analysed 05 Sep 2018 ME-(AU)-[ENV]AN Analysed
iotal Recoverable Elemen Sample Name TP203 0.4-0.5 RH (Total Recoverable H Sample Name TP203 0.4-0.5 'OC's in Soll Sample Name TP203 0.4-0.5 'olatile Petroleum Hydrocc Sample Name	Sample No. SE183218.001 Iydrocarbons) in Soll Sample No. SE183218.001 Sample No. SE183218.001	QC Ref LB155657 QC Ref LB155656	24 Aug 2018 Sampled 24 Aug 2018 Sampled	29 Aug 2018 Received 29 Aug 2018 Received	20 Feb 2019 Extraction Due 07 Sep 2018 Extraction Due	03 Sep 2018 Extracted 03 Sep 2018 Extracted	Analysis Due 20 Feb 2019 Method: Analysis Due 13 Oct 2018 Method: Analysis Due 13 Oct 2018	Analysed 04 Sep 2018 ME-(AU)-[ENV]AN Analysed 05 Sep 2018 ME-(AU)-[ENV]AN Analysed 05 Sep 2018

SURROGATES

SE183218 R0

Method: ME-(AU)-[ENV]AN433

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

OC Pesticides in Soil				Method: M	E-(AU)-[ENV]AN4
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Tetrachloro-m-xylene (TCMX) (Surrogate)	TP203 0.4-0.5	SE183218.001	%	60 - 130%	123
OP Pesticides in Soll				Method: M	E-(AU)-[ENV]AN4
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
2-fluorobiphenyl (Surrogate)	TP203 0.4-0.5	SE183218.001	%	60 - 130%	90
d14-p-terphenyl (Surrogate)	TP203 0.4-0.5	SE183218.001	%	60 - 130%	88
d14-p-terphenyl (Surrogate) PAH (Polynuclear Aromatic Hydrocarbons) in Soil	TP203 0.4-0.5	SE183218.001	%		
PAH (Polynuclear Aromatic Hydrocarbons) in Soil	TP203 0.4-0.5 Sample Name	SE183218.001 Sample Number	% Units		e-(au)-[env]an4
PAH (Polynuclear Aromatic Hydrocarbons) in Soil				Method: M	E-(AU)-[ENV]AN4
PAH (Polynuclear Aromatic Hydrocarbons) in Soil Parameter	Sample Name	Sample Number	Units	Method: M Criteria	E-(AU)-[ENV]AN4 Recovery %
PAH (Polynuclear Aromatic Hydrocarbons) in Soil Parameter 2-fluorobiphenyl (Surrogate)	Sample Name TP203 0.4-0.5	Sample Number SE183218.001	Units %	Method: M Criteria 70 - 130%	<mark>E-(AU)-[ENV]AN4</mark> Recovery % 90
PAH (Polynuclear Aromatic Hydrocarbons) in Soil Parameter 2-fluorobiphenyl (Surrogate) d14-p-terphenyl (Surrogate)	Sample Name TP203 0.4-0.5 TP203 0.4-0.5	Sample Number SE183218.001 SE183218.001	Units % %	Method: M Criteria 70 - 130% 70 - 130% 70 - 130%	E-(AU)-[ENV]AN4 Recovery % 90 88 76
PAH (Polynuclear Aromatic Hydrocarbons) in Soll Parameter 2-fluorobiphenyl (Surrogate) d14-p-terphenyl (Surrogate) d5-nitrobenzene (Surrogate)	Sample Name TP203 0.4-0.5 TP203 0.4-0.5	Sample Number SE183218.001 SE183218.001	Units % %	Method: M Criteria 70 - 130% 70 - 130% 70 - 130%	E-(AU)-[ENV]AN4 Recovery % 90 88

VOC's in Soil

Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Bromofluorobenzene (Surrogate)	TP203 0.4-0.5	SE183218.001	%	60 - 130%	80
d4-1,2-dichloroethane (Surrogate)	TP203 0.4-0.5	SE183218.001	%	60 - 130%	89
d8-toluene (Surrogate)	TP203 0.4-0.5	SE183218.001	%	60 - 130%	83
Dibromofluoromethane (Surrogate)	TP203 0.4-0.5	SE183218.001	%	60 - 130%	92
Dibromofluoromethane (Surrogate)	TP203 0.4-0.5	SE183218.001	%	60 - 130%	92

Method: ME-(AU)-[ENV]AN433 Volatile Petroleum Hydrocarbons in Soil Parameter Sample Number Criteria Recovery % Sample Name Bromofluorobenzene (Surrogate) TP203 0.4-0.5 SE183218.001 % 60 - 130% 80 d4-1,2-dichloroethane (Surrogate) TP203 0.4-0.5 SE183218.001 % 60 - 130% 89 d8-toluene (Surrogate) TP203 0.4-0.5 SE183218.001 % 60 - 130% 83 Dibromofluoromethane (Surrogate) TP203 0.4-0.5 SE183218.001 60 - 130% 92 %

METHOD BLANKS

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Mercury in Soil			Meth	od: ME-(AU)-[ENV]AN312
Sample Number	Parameter	Units	LOR	Result
LB155658.001	Mercury	mg/kg	0.05	<0.05

OC Pesticides in Soil

OC Pesticides in Soil			Meth	od: ME-(AU)-[ENV]AN42
Sample Number	Parameter	Units	LOR	Result
LB155656.001	Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1
	Alpha BHC	mg/kg	0.1	<0.1
	Lindane	mg/kg	0.1	<0.1
	Heptachlor	mg/kg	0.1	<0.1
	Aldrin	mg/kg	0.1	<0.1
	Beta BHC	mg/kg	0.1	<0.1
	Delta BHC	mg/kg	0.1	<0.1
	Heptachlor epoxide	mg/kg	0.1	<0.1
	Alpha Endosulfan	mg/kg	0.2	<0.2
	Gamma Chlordane	mg/kg	0.1	<0.1
	Alpha Chlordane	mg/kg	0.1	<0.1
	p,p'-DDE	mg/kg	0.1	<0.1
	Dieldrin	mg/kg	0.2	<0.2
	Endrin	mg/kg	0.2	<0.2
	Beta Endosulfan	mg/kg	0.2	<0.2
	p,p'-DDD	mg/kg	0.1	<0.1
	p,p'-DDT	mg/kg	0.1	<0.1
	Endosulfan sulphate	mg/kg	0.1	<0.1
	Endrin Aldehyde	mg/kg	0.1	<0.1
	Methoxychlor	mg/kg	0.1	<0.1
	Endrin Ketone	mg/kg	0.1	<0.1
	Isodrin	mg/kg	0.1	<0.1
	Mirex	mg/kg	0.1	<0.1
Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	%	-	73
OP Pesticides in Soil			Meth	od: ME-(AU)-[ENV]AN42
Sample Number	Parameter	Units	LOR	Result
LB155656.001	Dichlorvos	mg/kg	0.5	<0.5
	Dimethoate	mg/kg	0.5	<0.5
	Diazinon (Dimpylate)	mg/kg	0.5	<0.5
	Fenitrothion	mg/kg	0.2	<0.2
	Malathion	mg/kg	0.2	<0.2
	Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2
	Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2
	Bromophos Ethyl	mg/kg	0.2	<0.2

	d14-p-terphenyl (Surrogate)	%	-	98
Surrogates	2-fluorobiphenyl (Surrogate)	%	-	96
	Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2
	Ethion	mg/kg	0.2	<0.2
	Methidathion	mg/kg	0.5	<0.5
	Bromophos Ethyl	mg/kg	0.2	<0.2

Sample Number	Parameter	Units	LOR	Result
LB155656.001	Naphthalene	mg/kg	0.1	<0.1
	2-methylnaphthalene	mg/kg	0.1	<0.1
	1-methylnaphthalene	mg/kg	0.1	<0.1
	Acenaphthylene	mg/kg	0.1	<0.1
	Acenaphthene	mg/kg	0.1	<0.1
	Fluorene	mg/kg	0.1	<0.1
	Phenanthrene	mg/kg	0.1	<0.1
	Anthracene	mg/kg	0.1	<0.1
	Fluoranthene	mg/kg	0.1	<0.1
	Pyrene	mg/kg	0.1	<0.1
	Benzo(a)anthracene	mg/kg	0.1	<0.1
	Chrysene	mg/kg	0.1	<0.1
	Benzo(a)pyrene	mg/kg	0.1	<0.1

METHOD BLANKS

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

PAH (Polynuclear Aromatic Hydrocarbons) in Soil (continued) Method: ME-(AU)-[ENV]AN420 LOR Sample Number Paran Units Result LB155656.001 Indeno(1,2,3-cd)pyrene mg/kg 0.1 < 0.1 Dibenzo(ah)anthracene mg/kg 0.1 <0.1 0.1 <0.1 Benzo(ghi)perylene mg/kg Total PAH (18) mg/kg 0.8 <0.8 Surrogates d5-nitrobenzene (Surrogate) 80 % 2-fluorobiphenyl (Surrogate) % 96 d14-p-terphenyl (Surrogate) 98 % -Method: ME-(AU)-[ENV]AN420 PCBs in Soil Sample Numb Result Parameter LOR LB155656.001 Arochlor 1016 0.2 <0.2 mg/kg Arochlor 1221 mg/kg 0.2 <0.2 Arochlor 1232 mg/kg 0.2 <0.2 Arochlor 1242 0.2 <0.2 mg/kg Arochlor 1248 mg/kg 0.2 < 0.2 Arochlor 1254 mg/kg 0.2 <0.2 Arochlor 1260 0.2 <0.2 mg/kg Arochlor 1262 mg/kg 0.2 < 0.2 Arochlor 1268 0.2 <0.2 mg/kg Total PCBs (Arochlors) mg/kg <1 1 Surrogates Tetrachloro-m-xylene (TCMX) (Surrogate) % 73 Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES Method: ME-(AU)-[ENV]AN040/AN320 LOR Sample Number Result LB155657.001 Arsenic, As mg/kg 1 2 Cadmium, Cd mg/kg 0.3 <0.3 Chromium, Cr 0.3 <0.3 mg/kg 0.5 <0.5 Copper, Cu mg/kg Nickel, Ni mg/kg 0.5 <0.5 Lead, Pb <1 mg/kg 1 2 <2.0 Zinc, Zn mg/kg TRH (Total Recoverable Hydrocarbons) in Soil Method: ME-(AU)-[ENV]AN403 Units Result Sample Number Parameter LOR LB155656.001 TRH C10-C14 20 <20 mg/kg TRH C15-C28 mg/kg 45 <45 TRH C29-C36 mg/kg 45 <45 TRH C37-C40 100 <100 mg/kg TRH C10-C36 Total mg/kg 110 <110 Method: ME-(AU)-[ENV]AN433 VOC's in Soil Sample Numbe Units Result Parameter LOR LB155655.001 Monocyclic Aromatic Benzene mg/kg 0.1 <0.1 Hvdrocarbons Toluene mg/kg 0.1 <0.1 Ethylbenzene 0.1 <0.1 mg/kg 0.2 <0.2 m/p-xylene mg/kg o-xylene mg/kg 0.1 < 0.1 Polycyclic VOCs Naphthalene 0.1 <0.1 mg/kg Dibromofluoromethane (Surrogate) Surrogates 88 % d4-1,2-dichloroethane (Surrogate) % 87 d8-toluene (Surrogate) % 85 Bromofluorobenzene (Surrogate) % 83 Totals Total BTEX mg/kg 0.6 <0.6 Volatile Petroleum Hydrocarbons in Soil Method: ME-(AU)-[ENV]AN433 Sample Number Parameter Units LOR Result LB155655.001 TRH C6-C9 20 <20 mg/kg Surrogates Dibromofluoromethane (Surrogate) % 88 d4-1,2-dichloroethane (Surrogate) % 87 d8-toluene (Surrogate) % 85

Method: ME_(ALI)_TENV/IAN312

Method: ME-(AU)-IENVIAN002

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Mercury in Soil

Morodry III Coll						Wour	ou. ML-(//0)-[,city paro 12
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE183280.003	LB155658.014	Mercury	mg/kg	0.05	0.0046340689	90.0038791069	200	0
SE183286.001	LB155658.020	Mercury	mg/kg	0.05	0.0332130556	60.0370238676	172	0

Moisture Content

molotare contone						moun		
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE183248.004	LB155654.011	% Moisture	%w/w	0.5	18	20	35	12
SE183286.001	LB155654.021	% Moisture	%w/w	0.5	6.6350710900	6.7574931880	45	2

OC Pesticides in Soil

riginal	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
183286.001	LB155656.024	Hexachlorobenzene (HCB)	mg/kg	0.1	0	0	200	0
		Alpha BHC	mg/kg	0.1	0	0	200	0
		Lindane	mg/kg	0.1	0	0	200	0
		Heptachlor	mg/kg	0.1	0	0	200	0
		Aldrin	mg/kg	0.1	0	0	200	0
		Beta BHC	mg/kg	0.1	0	0	200	0
		Delta BHC	mg/kg	0.1	0	0	200	0
		Heptachlor epoxide	mg/kg	0.1	0	0	200	0
		o,p'-DDE	mg/kg	0.1	0	0	200	0
		Alpha Endosulfan	mg/kg	0.2	0	0	200	0
		Gamma Chlordane	mg/kg	0.1	0	0	200	0
		Alpha Chlordane	mg/kg	0.1	0	0	200	0
		trans-Nonachlor	mg/kg	0.1	0	0	200	0
		p,p'-DDE	mg/kg	0.1	0	0	200	0
		Dieldrin	mg/kg	0.2	0	0	200	0
		Endrin	mg/kg	0.2	0	0	200	0
		o,p'-DDD	mg/kg	0.1	0	0	200	0
		o,p'-DDT	mg/kg	0.1	0	0	200	0
		Beta Endosulfan	mg/kg	0.2	0	0	200	0
		p,p'-DDD	mg/kg	0.1	0	0	200	0
		p,p'-DDT	mg/kg	0.1	0	0	200	0
		Endosulfan sulphate	mg/kg	0.1	0	0	200	0
		Endrin Aldehyde	mg/kg	0.1	0	0	200	0
		Methoxychlor	mg/kg	0.1	0	0	200	0
		Endrin Ketone	mg/kg	0.1	0	0	200	0
		Isodrin	mg/kg	0.1	0	0	200	0
		Mirex	mg/kg	0.1	0	0	200	0
		Total CLP OC Pesticides	mg/kg	1	0	0	200	0
	Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0.175	0.19	30	8

Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE183286.001	LB155656.024	Dichlorvos	mg/kg	0.5	0	0	200	0
		Dimethoate	mg/kg	0.5	0	0	200	0
		Diazinon (Dimpylate)	mg/kg	0.5	0.05	0	200	0
		Fenitrothion	mg/kg	0.2	0	0	200	0
		Malathion	mg/kg	0.2	0	0	200	0
		Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	0.07	0.05	200	0
		Parathion-ethyl (Parathion)	mg/kg	0.2	0	0	200	0
		Bromophos Ethyl	mg/kg	0.2	0.08	0.03	200	0
		Methidathion	mg/kg	0.5	0	0	200	0
		Ethion	mg/kg	0.2	0	0	200	0
		Azinphos-methyl (Guthion)	mg/kg	0.2	0	0	200	0
		Total OP Pesticides*	mg/kg	1.7	0	0	200	0
	Surrogates	2-fluorobiphenyl (Surrogate)	mg/kg	-	0.44	0.56	30	24
		d14-p-terphenyl (Surrogate)	mg/kg	-	0.49	0.53	30	8
AH (Polynuclear	Aromatic Hydrocarbons) in Soil					Meth	od: ME-(AU)-[ENVJAN4
Original	Duplicate	Parameter	Units	LOR				

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Original	Aromatic Hydrocarb Duplicate		Parameter	Units	LOR	Original	Duplicate	d: ME-(AU)- Criteria %	RPD
						-	-		
SE183280.001	LB155656.026		Naphthalene	mg/kg	0.1	0	0	200	0
			2-methylnaphthalene	mg/kg	0.1	0	0	200	0
			1-methylnaphthalene	mg/kg	0.1	0	0	200	0
			Acenaphthylene	mg/kg	0.1	0	0	200	0
			Acenaphthene	mg/kg	0.1	0	0	200	0
			Fluorene	mg/kg	0.1	0	0	200	0
			Phenanthrene	mg/kg	0.1	0	0	200	0
			Anthracene	mg/kg	0.1	0	0	200	0
			Fluoranthene	mg/kg	0.1	0	0	200	0
			Pyrene	mg/kg	0.1	0	0	200	C
			Benzo(a)anthracene	mg/kg	0.1	0.01	0	200	C
			Chrysene	mg/kg	0.1	0	0	200	
					0.1	0	0	200	
			Benzo(b&j)fluoranthene	mg/kg					
			Benzo(k)fluoranthene	mg/kg	0.1	0	0	200	(
			Benzo(a)pyrene	mg/kg	0.1	0.01	0.01	200	(
			Indeno(1,2,3-cd)pyrene	mg/kg	0.1	0	0	200	(
			Dibenzo(ah)anthracene	mg/kg	0.1	0	0	200	
			Benzo(ghi)perylene	mg/kg	0.1	0	0	200	
			Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>mg/kg</td><td>0.2</td><td>0</td><td>0</td><td>200</td><td></td></lor=0<>	mg/kg	0.2	0	0	200	
			Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>mg/kg</td><td>0.3</td><td>0.242</td><td>0.242</td><td>134</td><td></td></lor=lor<>	mg/kg	0.3	0.242	0.242	134	
			Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>mg/kg</td><td>0.2</td><td>0.121</td><td>0.121</td><td>175</td><td></td></lor=lor>	mg/kg	0.2	0.121	0.121	175	
			Total PAH (18)	mg/kg	0.8	0	0	200	
		Surrogates	d5-nitrobenzene (Surrogate)	mg/kg	-	0.39	0.38	30	
		ounogates	2-fluorobiphenyl (Surrogate)		-	0.44	0.00	30	
				mg/kg			0.42	30	
			d14-p-terphenyl (Surrogate)	mg/kg	-	0.47			
Bs in Soil							Metho	d: ME-(AU)-	[ENV]
riginal	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RP
183286.001	LB155656.024		Arochlor 1016	mg/kg	0.2	0	0	200	
			Arochlor 1221	mg/kg	0.2	0	0	200	
			Arochlor 1232	mg/kg	0.2	0	0	200	
			Arochlor 1242	mg/kg	0.2	0	0	200	
			Arochlor 1248	mg/kg	0.2	0	0	200	
			Arochlor 1254	mg/kg	0.2	0	0	200	
						0	0	200	
			Arochlor 1260	mg/kg	0.2				
			Arochlor 1262	mg/kg	0.2	0	0	200	
			Arochlor 1268	mg/kg	0.2	0	0	200	
			Total PCBs (Arochlors)	mg/kg	1	0	0	200	
		Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0.175	0.19	30	
al Recoverable	Elements in Soil/Wa	aste Solids/Materia	Is by ICPOES				Method: ME-(AU)-[ENV]A	N040
riginal	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RP
183280.003	LB155657.014		Arsenic, As	mg/kg	1	-	36.1295168067	48	2
100200.000	20100001.014		Cadmium, Cd		0.3		70.1480336134	200	-
				mg/kg					
			Chromium, Cr	mg/kg	0.3		42.3654327731	34	
			Copper, Cu	mg/kg	0.5		27.6931218487	36	1
			Nickel, Ni	mg/kg	0.5	6.579586721	97.2443949579	37	1
			Lead, Pb	mg/kg	1	10.310640546	90.4271176470	40	
			Zinc, Zn	mg/kg	2	17.842650844	76.2420630252	42	
183286.001	LB155657.020		Arsenic, As	mg/kg	1	3.591471275	42.7524779069	62	2
			Cadmium, Cd	mg/kg	0.3	0.123257594	00.0830310077	200	
			Chromium, Cr	mg/kg	0.3	7.960740472	111.3005201550	35	3
			Copper, Cu	mg/kg	0.5		42.0519507751	34	3
			Nickel, Ni	mg/kg	0.5		35.9989903100	38	
					1			35	
			Lead, Pb	mg/kg			979.3711341085 97.2134127906		1
			Zinc, Zn	mg/kg	2	⇒1.33293U464		37	
H (Total Recove	erable Hydrocarbons	s) in Soil					Metho	d: ME-(AU)-	[ENV]
riginal	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RP
-	LB155656.026		TRH C10-C14		20	0	0	200	
Original SE183280.001				Units mg/kg mg/kg mg/kg					%

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

	erable Hydrocarbons) in Soil (continued)					Meth	nod: ME-(AU)-	[ENV]AN4
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE183280.001	LB155656.026		TRH C37-C40	mg/kg	100	0	0	200	0
			TRH C10-C36 Total	mg/kg	110	0	0	200	0
			TRH C10-C40 Total (F bands)	mg/kg	210	0	0	200	0
		TRH F Bands	TRH >C10-C16	mg/kg	25	0	0	200	0
			TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	0	0	200	0
			TRH >C16-C34 (F3)	mg/kg	90	0	0	200	0
			TRH >C34-C40 (F4)	mg/kg	120	0	0	200	0
SE183286.001	LB155656.024		TRH C10-C14	mg/kg	20	0	0	200	0
			TRH C15-C28	mg/kg	45	0	0	200	0
			TRH C29-C36	mg/kg	45	0	0	200	0
			TRH C37-C40	mg/kg	100	0	0	200	0
			TRH C10-C36 Total	mg/kg	110	0	0	200	0
			TRH C10-C40 Total (F bands)	mg/kg	210	0	0	200	0
		TRH F Bands	TRH >C10-C16	mg/kg	25	0	0	200	0
			TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	0	0	200	0
			TRH >C16-C34 (F3)	mg/kg	90	0	0	200	0
			TRH >C34-C40 (F4)	mg/kg	120	0	0	200	0
/OC's in Soil							Meth	nod: ME-(AU)-	ENVJAN4
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE183279.001	LB155655.025	Monocyclic	Benzene	mg/kg	0.1	<0.1	<0.1	200	0
		Aromatic	Toluene	mg/kg	0.1	<0.1	<0.1	200	0
			Ethylbenzene	mg/kg	0.1	<0.1	<0.1	200	0
			m/p-xylene	mg/kg	0.2	<0.2	<0.2	200	0
			o-xylene	mg/kg	0.1	<0.1	<0.1	200	0
		Polycyclic	Naphthalene	mg/kg	0.1	<0.1	<0.1	200	0
		Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	4.4	3.9	50	12
			d4-1,2-dichloroethane (Surrogate)	mg/kg	-	4.4	3.9	50	13
			d8-toluene (Surrogate)	mg/kg	-	4.1	3.6	50	11
			Bromofluorobenzene (Surrogate)	mg/kg	-	4.1	3.6	50	14
		Totals	Total Xylenes	mg/kg	0.3	<0.3	<0.3	200	0
			Total BTEX	mg/kg	0.6	<0.6	<0.6	200	0
SE183286.001	LB155655.024	Monocyclic	Benzene	mg/kg	0.1	0	0	200	0
		Aromatic	Toluene	mg/kg	0.1	0.01	0.01	200	0
			Ethylbenzene	mg/kg	0.1	0	0	200	0
			m/p-xylene	mg/kg	0.2	0.02	0.01	200	0
			o-xylene	mg/kg	0.1	0.01	0.01	200	0
		Polycyclic	Naphthalene	mg/kg	0.1	0	0	200	0
		Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	4.55	4.36	50	4
			d4-1,2-dichloroethane (Surrogate)	mg/kg	-	4.59	4.47	50	3
			d8-toluene (Surrogate)	mg/kg	-	4.13	3.92	50	5
			Bromofluorobenzene (Surrogate)	mg/kg	-	4.12	3.9	50	5
		Totals	Total Xylenes	mg/kg	0.3	0.03	0.02	200	0
			Total BTEX	mg/kg	0.6	0.04	0.03	200	0
/olatile Petroleum	Hydrocarbons in Soi	I					Mett	nod: ME-(AU)-	ENVJAN4
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE183279.001	LB155655.025		TRH C6-C10	mg/kg	25	<25	<25	200	0
02100210.001	28100000.020		TRH C6-C9	mg/kg	20	<20	<20	200	0
		Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	4.4	3.9	30	12
			d4-1,2-dichloroethane (Surrogate)	mg/kg	-	4.4	3.9	30	13
			d8-toluene (Surrogate)	mg/kg	-	4.1	3.6	30	11
			Bromofluorobenzene (Surrogate)	mg/kg	-	4.1	3.6	30	14
		VPH F Bands	Benzene (F0)	mg/kg	0.1	<0.1	<0.1	200	0
			TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	200	0
SE183286.001	LB155655.024		TRH C6-C10	mg/kg	25	0	0	200	0
	2010000024		TRH C6-C9	mg/kg	20	0	0	200	0
		Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	- 20	4.55	4.36	30	4
		Gunogales	d4-1,2-dichloroethane (Surrogate)	mg/kg	-	4.59	4.30	30	3
			d4-1,2-dichloroetnane (Surrogate) d8-toluene (Surrogate)	mg/kg		4.59	3.92	30	5
			Bromofluorobenzene (Surrogate)	mg/kg	-	4.12	3.9	30	5

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Volatile Petroleum	Hydrocarbons in Soi	(continued)					Meth	od: ME-(AU)-	ENVJAN433
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE183286.001	LB155655.024	VPH F Bands	TRH C6-C10 minus BTEX (F1)	mg/kg	25	-0.04	-0.03	200	0

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Mercury in Soil				N	lethod: ME-(A	U)-[ENV]AN312
Sample Number Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB155658.002 Mercury	mg/kg	0.05	0.18	0.2	70 - 130	89

OC Pesticides in S	Soil					N	Nethod: ME-(A	U)-[ENV]AN420
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB155656.002		Heptachlor	mg/kg	0.1	0.2	0.2	60 - 140	104
		Aldrin	mg/kg	0.1	0.2	0.2	60 - 140	106
		Delta BHC	mg/kg	0.1	0.2	0.2	60 - 140	104
		Dieldrin	mg/kg	0.2	<0.2	0.2	60 - 140	96
		Endrin	mg/kg	0.2	<0.2	0.2	60 - 140	89
		p,p'-DDT	mg/kg	0.1	0.2	0.2	60 - 140	79
	Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0.18	0.15	40 - 130	117
OP Pesticides in S	ioil					N	Nethod: ME-(A	U)-[ENV]AN42(
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB155656.002		Dichlorvos	mg/kg	0.5	2.0	2	60 - 140	98
		Diazinon (Dimpylate)	mg/kg	0.5	2.0	2	60 - 140	102
		Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	2.0	2	60 - 140	101
		Ethion	mg/kg	0.2	1.9	2	60 - 140	95
	Surrogates	2-fluorobiphenyl (Surrogate)	mg/kg	-	0.4	0.5	40 - 130	86
		d14-p-terphenyl (Surrogate)	mg/kg	-	0.4	0.5	40 - 130	88
PAH (Polynuclear	Aromatic Hydroca	arbons) in Soll				N	Nethod: ME-(A	U)-[ENV]AN420
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB155656.002		Naphthalene	mg/kg	0.1	4.7	4	60 - 140	117
		Acenaphthylene	mg/kg	0.1	4.4	4	60 - 140	111
		Acenaphthene	mg/kg	0.1	4.5	4	60 - 140	112
		Phenanthrene	mg/kg	0.1	4.6	4	60 - 140	116
		Anthracene	mg/kg	0.1	4.6	4	60 - 140	116
		Fluoranthene	mg/kg	0.1	4.7	4	60 - 140	117
								118
		Pyrene	mg/kg	0.1	4.7	4	60 - 140	118
		Pyrene Benzo(a)pyrene	mg/kg mg/kg	0.1 0.1	4.7 4.5	4 4	60 - 140 60 - 140	118
	Surrogates			-				
	Surrogates	Benzo(a)pyrene	mg/kg	0.1	4.5	4	60 - 140	112
	Surrogates	Benzo(a)pyrene d5-nitrobenzene (Surrogate)	mg/kg mg/kg	0.1 -	4.5 0.4	4 0.5	60 - 140 40 - 130	112 76
PCBs in Soil	Surrogates	Benzo(a)pyrene d5-nitrobenzene (Surrogate) 2-fluorobiphenyl (Surrogate)	mg/kg mg/kg mg/kg	0.1 - -	4.5 0.4 0.4	4 0.5 0.5 0.5	60 - 140 40 - 130 40 - 130 40 - 130	112 76 86
PCBs in Soil Sample Number		Benzo(a)pyrene d5-nitrobenzene (Surrogate) 2-fluorobiphenyl (Surrogate)	mg/kg mg/kg mg/kg	0.1 - -	4.5 0.4 0.4	4 0.5 0.5 0.5	60 - 140 40 - 130 40 - 130 40 - 130	112 76 86 88

Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES

Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	LOR 1 0.3 0.5 0.5 1 2	Result 330 430 33 320 180 93 290	Expected 336.32 416.6 35.2 370.46 210.88 107.87 301.27	Criteria % 79 - 120 69 - 131 80 - 120 80 - 120 79 - 120 79 - 120 80 - 121	Recovery % 98 104 93 87 84 86 97
mg/kg mg/kg mg/kg mg/kg mg/kg	0.3 0.5 0.5 1	430 33 320 180 93	416.6 35.2 370.46 210.88 107.87	69 - 131 80 - 120 80 - 120 79 - 120 79 - 120	104 93 87 84 86
mg/kg mg/kg mg/kg mg/kg	0.3 0.5 0.5 1	33 320 180 93	35.2 370.46 210.88 107.87	80 - 120 80 - 120 79 - 120 79 - 120	93 87 84 86
mg/kg mg/kg mg/kg	0.5 0.5 1	320 180 93	370.46 210.88 107.87	80 - 120 79 - 120 79 - 120	87 84 86
mg/kg mg/kg	0.5 1	180 93	210.88 107.87	79 - 120 79 - 120	84 86
mg/kg	1	93	107.87	79 - 120	86
	· · · ·				
mg/kg	2	290	301.27	80 - 121	07
					31
			1	Method: ME-(A	U)-[ENV]AN40
Units	LOR	Result	Expected	Criteria %	Recovery %
mg/kg	20	33	40	60 - 140	83
mg/kg	45	<45	40	60 - 140	93
mg/kg	45	<45	40	60 - 140	65
mg/kg	25	34	40	60 - 140	85
mg/kg	90	<90	40	60 - 140	80
mg/kg	120	<120	20	60 - 140	75
	mg/kg mg/kg mg/kg mg/kg mg/kg	mg/kg 20 mg/kg 45 mg/kg 45 mg/kg 25 mg/kg 90	mg/kg 20 33 mg/kg 45 <45	mg/kg 20 33 40 mg/kg 45 <45	mg/kg 20 33 40 60 - 140 mg/kg 45 <45

Sample Number

5/9/2018

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB155655.002	Monocyclic	Benzene	mg/kg	0.1	3.3	2.9	60 - 140	112
	Aromatic	Toluene	mg/kg	0.1	2.4	2.9	60 - 140	82
		Ethylbenzene	mg/kg	0.1	2.5	2.9	60 - 140	87
		m/p-xylene	mg/kg	0.2	5.5	5.8	60 - 140	95
		o-xylene	mg/kg	0.1	2.6	2.9	60 - 140	90
	Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	4.7	5	60 - 140	95
		d4-1,2-dichloroethane (Surrogate)	mg/kg	-	4.8	5	60 - 140	95
		d8-toluene (Surrogate)	mg/kg	-	4.6	5	60 - 140	91
		Bromofluorobenzene (Surrogate)	mg/kg	-	4.7	5	60 - 140	94
olatile Petroleum	Hydrocarbons in §	Soil				N	/lethod: ME-(A	U)-[ENV]AN4
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery
B155655 002		TRH C6-C10	mg/kg	25	<25	24.65	60 - 140	95
3155655.002		TRH C6-C9	mg/kg	20	21	23.2	60 - 140	88
10 100000.002		1KH 60-69	iiig/kg					
	Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	4.7	5	60 - 140	95
	Surrogates			-	4.7 4.8	5	60 - 140 60 - 140	95 95
	Surrogates	Dibromofluoromethane (Surrogate)	mg/kg					
	Surrogates	Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate)	mg/kg mg/kg	-	4.8	5	60 - 140	95

MATRIX SPIKES

Method: ME-(AU)-[ENV]AN420

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Mercury in Soil						Met	hod: ME-(AL	J)-[ENV]AN312
QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE183217.001	LB155658.004	Mercury	mg/kg	0.05	0.18	<0.05	0.2	84

PAH (Polynuclear Aromatic Hydrocarbons) in Soil

Katikation of the second se							_			/ Leite partice													
Partylingsheine: mage of isolation: mage of iso	QC Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recovery%													
Angle optimized in the second optimized in th	SE183217.002	LB155656.025		Naphthalene	mg/kg				4	114													
kernstnijver Areactinityer mode mod				2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	-	-													
kramine mp mp mp mp mp mp Persidence mp mp 0.0 4.0 4.0 10.0 Persidence mp mp 0.0 4.0 4.0 10.0 Persidence mp mp 0.0 4.0 4.0 4.0 Persidence mp mp 0.0 4.0 4.0 4.0 Persidence mp mp 0.0 4.0				1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	-	-													
Partial provision of the properties of the properis of the properties of the properties of the properties of th			225 Naphthalene 2-methylnaphthalene 1-methylnaphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(k)lfluoranthene Benzo(k)lfluoranthene	mg/kg	0.1	4.4	<0.1	4	110														
Pierrantene mpig 0, 1, 4,5, 4,7, 4,8, 4,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,				Acenaphthene	mg/kg	0.1	4.3	<0.1	4	107													
Animagene Park (a field of a field				Fluorene	mg/kg	0.1	<0.1	<0.1	-	-													
Provide mpdi 4.0 4.				Phenanthrene	mg/kg	0.1	4.5	<0.1	4	113													
Pinemine mpdi 4.0 4				Anthracene	mg/kg	0.1	4.5	<0.1	4	111													
Piperia in the second seco				Fluoranthene			4.6	<0.1	4	115													
Bases(paintanzam mg/g 0.1 -0.1 -0.1 - Branch/s/Basen/Burne mg/g 0.1 -0.1 - - - Branch/s/Basen/Burne mg/g 0.1 -0.1 -				Pyrene		0.1	4.6	<0.1	4	115													
Chypana mg/a 0.1 -0.1																							
Field Stands																							
Banacol/Inconstantance mg/s 0.1 4.0.1 4.0.1 4.0.1 4.0.1 Index 12.5-2 (day)me mg/s 0.1 4.0.1 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>																							
Banoologionen mglag 0.1 4.8 0.1 4.0 4.0 100 Deenoclathentineseen mglag 0.1 4.01 4.01 - - Bancolathentineseen mglag 0.1 4.01 - - - Geronogene PAHs, Ball FEG 4.00R-0 TEG (mglag) 0.3 5.0 4.03 - - Geronogene PAHs, Ball FEG 4.00R-0 TEG (mglag) 0.3 5.0 4.03 - - Geronogene PAHs, Ball FEG 4.00R-0 TEG (mglag) 0.3 4.0 - - - Sungates Geronogene PAHs, Ball FEG 4.00R-0 TEG (mglag) 0.3 4.0 - - - Sungates Geronogene PAHs, Ball FEG 4.00R-0 mglag 0.5 6.0 -																							
Image: start of the start o																							
Bissocial Physics Social State TEG 4: COR-DCR mplg 0.1 -0.																							
Sample Number Parameter End Only 0.1																							
Carangenic P4Hs, BaP TEQ 40,0R=0 TEQ rmpspin 0.2 4.8 -0.2 - Carangenic P4Hs, BaP TEQ 40,0R-00 TEQ rmpspin 0.3 5.0 -0.3 - - Surrangenic P4Hs, BaP TEQ 40,0R-002 TEQ rmpspin 0.8 -0.8 -0.8 - - - Surragenic P4Hs, BaP TEQ 40,0R-002 TEQ rmpshin 0.64 0.6 -<									-	-													
Image: constraint of the second sec				Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1	-	-													
Image: control bit is the state of				Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td>4.8</td><td><0.2</td><td>-</td><td>-</td></lor=0<>	TEQ (mg/kg)	0.2	4.8	<0.2	-	-													
Vertical Total PAH (18) mptp 0.8 38 -0.8 - Surrogates distrobenane (Surrogate) mpkp - 0.4 0.5 0.6 0.6 2-Nuorobe/men/ (Surrogate) mpkp - 0.6 0.5 0.5 0.6 0.6 Color Delemants in Solf/Vector Parametor Units Color Delemants Splite Network				Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td>5.0</td><td><0.3</td><td>-</td><td>-</td></lor=lor<>	TEQ (mg/kg)	0.3	5.0	<0.3	-	-													
Surgates ds-inclobations(Surgate) mg/kg - 0.4 0.4 0.4 0.6 76 24/uordpithmi (Surgate) mg/kg - 0.4 0.5 - 0.6 bit Ap-traphytic (Surgate) mg/kg - 0.4 0.5 - 0.6 bit Ap-traphytic (Surgate) mg/kg - 0.4 0.5 - 0.6 bit Ap-traphytic (Surgate) mg/kg - 0.4 0.3 0.5 0.6				Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td>4.9</td><td><0.2</td><td>-</td><td>-</td></lor=lor>	TEQ (mg/kg)	0.2	4.9	<0.2	-	-													
2-Buorobineny (Surrogate) mghg 0.4 0.5 84 24-Buorobineny (Surrogate) mghg 0.5 </td <td></td> <td></td> <td></td> <td>Total PAH (18)</td> <td>mg/kg</td> <td>0.8</td> <td>36</td> <td><0.8</td> <td>-</td> <td>-</td>				Total PAH (18)	mg/kg	0.8	36	<0.8	-	-													
d14-plampenyt (Surrogale) mg/sg d. 5. 0.5. 0.5. 0.5. 0.5. 0.5. 0.5. 262 Sample Number Parameter VLPCOES Nethol: XLEV/VLPLNV/VLPUND 202 Sample Number Parameter Units LOR Result Original Spite Rescover 262 Sample Number Parameter Units LOR Result Original Spite Rescover 263 Sample Number Aranei, Ca mg/sg 0.3 5.1 2.4 6.0 9.6 Chronium, Cr mg/sg 0.5 5.4 3.1 5.0 9.6 Coper, Cu mg/sg 0.5 5.4 3.1 5.0 9.6 Lead, Po mg/sg 0.5 5.4 3.1 5.0 9.6 Zor, Zn mg/sg 0.5 5.4 3.1 5.0 9.6 Casample Number Parameter mg/sg 1.6 5.6 7.7 5.0 9.6 Casample Number Parameter Monocity Monocity Monocity Nonocity Nonoci			Surrogates	d5-nitrobenzene (Surrogate)	mg/kg	-	0.4	0.4	-	76													
Stanple Sumple Number Parameter Units LOR Result Original Spike Recover EE183217.001 LB155657.004 Asemic, As mg/kg 1 46 3 50 9.84 Cadmium, Cd mg/kg 0.3 51 2.4 50 9.64 Copper, Cu mg/kg 0.5 54 3.1 60 101 Nickel, Ni Nickel, Ni mg/kg 0.5 54 3.1 60 9.94 Lead, Pb mg/kg 1 55 7 50 9.4 Lead, Pb mg/kg 1 55 7 50 9.94 Lead, Pb mg/kg 101 55 7 50 9.4 Sample Number Parameter Units LOR Result Original Spike Recover LE183217.002 LB155658.025 TFH C10-C14 mg/kg 20 39 <20				2-fluorobiphenyl (Surrogate)	mg/kg	-	0.4	0.5	-	84													
bit Account in Solit/Wasto Solids/Materials by CPCBS bit State Colspan=16 bit State Colspan=16				d14-p-terphenyl (Surrogate)		-	0.5	0.5	-	96													
Sample Sample Number Parameter Units LOR Result Original Spike Recover EE183217.001 LB155657.004 Arsenic, As mg/kg 1 4.6 3 50 8.6 Cadmium, Cd mg/kg 0.3 4.7 <0.3	otal Recoverable	e Elements in Soil/W	aste Solids/Materi	als by ICPOES				Method: ME	-(AU)-IENV	AN040/AN32													
Ker Bas 217.001 LB 155657.004 Arsenic. As Cadmium, Cd mg/kg 1 46 3 50 86 Cadmium, Cd mg/kg 0.3 47 40.3 50 94 Chromum, Cr mg/kg 0.5 54 3.1 50 96 Copper, Cu mg/kg 0.5 54 3.1 50 94 Nickel, Ni mg/kg 0.5 48 1.2 50 94 Lead, Po mg/kg 1 55 7 50 95 Zo Sample Sample Number Parameter mg/kg 20 48 94 90 TRI C10-C14 mg/kg 20 945 445 40 90 TRI C10-C26 mg/kg 100 <110				•	Unite	LOP	Posult																
Cadmiun, Cd mg/kg 0.3 47 40.3 50 94 Chromiun, Cr mg/kg 0.3 51 2.4 50 96 Copper, Cu mg/kg 0.5 54 3.1 50 94 Nickel, Ni mg/kg 0.5 54 3.1 50 94 Lead, Pb mg/kg 0.5 54 3.1 50 94 Zor, Zn mg/kg 0.5 54 3.1 50 94 Zor, Zn mg/kg 0.1 55 7 50 95 Zor, Zn mg/kg 2 30 60 90 110 Sample Sample Number Parameter Units LOR Result Origint Same Recover SE183217.002 LB15666.025 TRH C10-C14 mg/kg 20 39 <25																							
Chronium, Cr mg/kg 0.3 51 2.4 50 96 Copper, Cu mg/kg 0.5 54 3.1 50 101 Nickel, Ni mg/kg 0.5 48 1.2 50 94 Lead, Pb mg/kg 1 55 7 50 95 Zinc, Zn mg/kg 1 55 7 50 94 CX ample Number Dample Number Dample Number Dample Number Dample Number Dample Number Dample Number Spike Recover EX 15257.020 LB155656.025 TRH C10-C14 mg/kg 45 <45	SE103217.001	LB155057.004																					
Copper, Cu mg/kg 0.5 54 3.1 50 101 Nickel, Ni mg/kg 0.5 48 1.2 50 94 Lead, Pb mg/kg 1 55 7 50 95 RC (Total Recordsons) in Soil Sample Number Parameter Units LOR Result Original Spike Record SEX 25002 LB155850.025 TRH C10-C14 mg/kg 20 39 <20																							
Nickel, Ni mg/kg 0.5 48 1.2 50 94 Lead, Pb mg/kg 1 55 7 50 955 Zinc, Zn mg/kg 2 100 69 50 113 RH (Total Recoverable Hydrocarbons) In Solt Nethod: Ne																							
Lead, Pb mg/kg 1 55 7 50 95 Zine, Zn mg/kg 2 130 69 50 113 RH (Total Recoveree Hydrocarbors) in Solt KH (Total Recoveree Hydrocarbors) in Solt CC Sample Sample Number Vertext Hydrocarbors) in Solt CC Sample Sample Number Parameter Units Colspan="2">Solt Method (Colspan="2">Colspan="2">Solt CC Sample Sample Number Parameter Units Colspan="2">Colspan="2">Colspan="2">Solt CC Sample Sample Number Parameter Units Colspan="2">Colspan="2">Solt Colspan="2">Colspan="2">Solt Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2" Colspan="2" Colspan= 2 Colspan= 2 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>																							
Zinc, Zn mg/kg 2 130 69 50 113 RH (Total Recoverable Hydrocarbons) in Soll Method: ME-(AU)-(ENV)AN AC Sample Sample Number Parameter Units LOR Result Original Spike Recoverable Hydrocarbons) AC Sample Sample Number Parameter Units LOR Result Original Spike Recoverable Hydrocarbons) AC Sample Sample Number Parameter Units LOR Result Original Spike Recoverable Hydrocarbons) AC Sample Sample Number Parameter Units LOR Result Original Spike Recoverable Hydrocarbons) TRH C10-C16 TRH C10-C16 mg/kg 100 <100																							
Method coarbons) in Soil Method Sample Number Parameter Units LOR Result Original Spike Result Result Original Spike Result Result Original Spike Result Colspan="6" Spike Result Original Result Result Cols Spike				Lead, Pb	mg/kg	· · · · · · · · · · · · · · · · · · ·				95													
Sample Sample Number Parameter Units LOR Result Original Spike Recover SE183217.002 LB155656.025 TRH C10-C14 mg/kg 20 39 <20				Zinc, Zn	mg/kg	2	130	69	50	113													
No. 1000 LB15565.025 LB15555.025 TRH C10-C14 mg/kg 20 39 <20 40 98 TRH C10-C26 TRH C10-C26 mg/kg 45 <45	RH (Total Recov	verable Hydrocarbon	s) in Soil					Meth	od: ME-(AU)-[ENV]AN40													
Kine Kine <th< td=""><td>QC Sample</td><td>Sample Number</td><td></td><td>Parameter</td><td>Units</td><td>LOR</td><td>Result</td><td>Original</td><td>Spike</td><td>Recovery</td></th<>	QC Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recovery													
Image: Second	SE183217.002	LB155656.025		TRH C10-C14	mg/kg	20	39	<20	40	98													
ITRH C29-C36 mg/kg 45 <45																							
TRH C37-C40 mg/kg 100 <100 <100 < - TRH C10-C36 Total mg/kg 110 <110						· · · · · · · · · · · · · · · · · · ·																	
TRH C10-C36 Total mg/kg 110 <110 <110 < <th><<th><<th> TRH C10-C36 Total mg/kg 210 <210</th></th></th>	< <th><<th> TRH C10-C36 Total mg/kg 210 <210</th></th>	< <th> TRH C10-C36 Total mg/kg 210 <210</th>	TRH C10-C36 Total mg/kg 210 <210	< <td><<td><<td><<td> TRH C10-C40 Total (F bands) mg/kg 210 <210</td> <210</td> <<td><<td><<td><<td><<td><<t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<></td></td></td></td></td></td></td>	< <td><<td><<td> TRH C10-C40 Total (F bands) mg/kg 210 <210</td> <210</td> <<td><<td><<td><<td><<td><<t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<></td></td></td></td></td></td>	< <td><<td> TRH C10-C40 Total (F bands) mg/kg 210 <210</td> <210</td> < <td><<td><<td><<td><<td><<t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<></td></td></td></td></td>	< <td> TRH C10-C40 Total (F bands) mg/kg 210 <210</td> <210	TRH C10-C40 Total (F bands) mg/kg 210 <210	< <td><<td><<td><<td><<t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<></td></td></td></td>	< <td><<td><<td><<t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<></td></td></td>	< <td><<td><<t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<></td></td>	< <td><<t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<></td>	< <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>										
TRH C10-C40 Total (F bands) mg/kg 210 <210 <210 < TRH F Bands TRH > C10-C16 mg/kg 25 39 <25																							
TRH F Bands TRH > C10-C16 mg/kg 25 39 <25 40 98 TRH > C10-C16 - Naphthalene (F2) mg/kg 25 39 <25										-													
TRH >C10-C16 - Naphthalene (F2) mg/kg 25 39 <25 - TRH >C16-C34 (F3) mg/kg 90 <90			TDUEDeed							-													
TRH >C16-C34 (F3) mg/kg 90 <90 <90 40 110 TRH >C34-C40 (F4) mg/kg 120 <120			IKH F Bands																				
TRH > C34-C40 (F4) mg/kg 120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>																							
Method: IDC's in Soil Method: IDC Sample Number Parameter Units LOR Result Original Spike Recover EE183217.001 LB155655.004 Monocyclic Aromatic Benzene mg/kg 0.1 3.2 <0.1																							
QC Sample Sample Number Parameter Units LOR Result Original Spike Recover EE183217.001 LB155655.004 Monocyclic Aromatic Benzene mg/kg 0.1 3.2 <0.1				TRH >C34-C40 (F4)	mg/kg	120	<120	<120	-	-													
Monocyclic Aromatic Benzene mg/kg 0.1 3.2 <0.1 2.9 110 Aromatic Toluene mg/kg 0.1 2.4 <0.1	OC's in Soil							Meth	nod: ME-(AU)-[ENV]AN43													
Monocyclic Aromatic Benzene mg/kg 0.1 3.2 <0.1 2.9 110 Aromatic Toluene mg/kg 0.1 2.4 <0.1	QC Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recovery													
Aromatic Toluene mg/kg 0.1 2.4 <0.1 2.9 81 Ethylbenzene mg/kg 0.1 2.6 <0.1	SE183217.001	-		Benzene	mg/kg	0.1	3.2	-	2.9	-													
Ethylbenzene mg/kg 0.1 2.6 <0.1 2.9 90 m/p-xylene mg/kg 0.2 5.8 <0.2																							
m/p-xylene mg/kg 0.2 5.8 <0.2 5.8 99																							
o-xytene mg/Kg U.1 2.8 <0.1 2.9 94																							
				(1-XVIPTIP)	ma/ka	U 1	∠.8	<0.1	2.9	94													

MATRIX SPIKES

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Method: ME-(AU)-[ENV]AN433 VOC's in Soil (continued) QC Sample Sample Number Original Spike Recovery% Parameter Units LOR Result SE183217.001 LB155655.004 Polycyclic Naphthalene mg/kg 0.1 <0.1 <0.1 Surrogates Dibromofluoromethane (Surrogate) mg/kg 4.5 4.4 90 d4-1,2-dichloroethane (Surrogate) 4.5 4.4 90 mg/kg d8-toluene (Surrogate) mg/kg -4.4 4.3 88 -Bromofluorobenzene (Surrogate) 4.5 4.3 90 mg/kg Totals Total Xylenes 0.3 8.5 <0.3 mg/kg Total BTEX 0.6 17 <0.6 mg/kg Volatile Petroleum Hydrocarbons in Soil Method: ME-(AU)-[ENV]AN433 Original Spike Recovery% QC Sample Sample Number Result Units LOR Parameter SE183217.001 LB155655.004 TRH C6-C10 24.65 25 <25 <25 97 mg/kg TRH C6-C9 mg/kg 20 21 <20 23.2 89 Surrogates Dibromofluoromethane (Surrogate) mg/kg 4.5 4.4 90 d4-1,2-dichloroethane (Surrogate) 4.5 4.4 90 mg/kg d8-toluene (Surrogate) mg/kg 4.4 4.3 88 Bromofluorobenzene (Surrogate) mg/kg 4.5 4.3 90 VPH F Benzene (F0) 0.1 3.2 <0.1 mg/kg Bands TRH C6-C10 minus BTEX (F1) mg/kg 25 <25 <25 7.25 102

Matrix spike duplicates are calculated as Relative Percent Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The original result is the analyte concentration of the matrix spike. The Duplicate result is the analyte concentration of the matrix spike duplicate.

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

No matrix spike duplicates were required for this job.

Samples analysed as received.

Solid samples expressed on a dry weight basis.

QC criteria are subject to internal review according to the SGS QA/QC plan and may be provided on request or alternatively can be found here: http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical Documents/MP-AU-ENV-QU-022 QA QC Plan.pdf

- * NATA accreditation does not cover the performance of this service .
- ** Indicative data, theoretical holding time exceeded.
- Sample not analysed for this analyte.
- IS Insufficient sample for analysis.
- LNR Sample listed, but not received.
- LOR Limit of reporting.
- QFH QC result is above the upper tolerance.
- QFL QC result is below the lower tolerance.
- ① At least 2 of 3 surrogates are within acceptance criteria.
- ② RPD failed acceptance criteria due to sample heterogeneity.
- ③ Results less than 5 times LOR preclude acceptance criteria for RPD.
- ④ Recovery failed acceptance criteria due to matrix interference.
- Recovery failed acceptance criteria due to the presence of significant concentration of analyte (i.e. the concentration of analyte exceeds the spike level).
- 6 LOR was raised due to sample matrix interference.
- O LOR was raised due to dilution of significantly high concentration of analyte in sample.
- Image:
- Recovery failed acceptance criteria due to sample heterogeneity.
- [®] LOR was raised due to high conductivity of the sample (required dilution).
- t Refer to Analytical Report comments for further information.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sqs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This test report shall not be reproduced, except in full.

CHAIN OF CUSTODY RECORD

LAB Name	SGS	
Address	16/33 Maddox St	
	Alexandria NSW 2015	
Client	Cardno (NSW/ACT) P	ty Ltd
	PO Box 74	2
	Broadmeadow	NSW 2292
Contact	Daniel McCallum	
Sampled by	Daniel McCallum	
Project Ref:	82219014	

Contact Numbers

Phone 0249 654555 Fax 0249 654666

dimce.stojanvoski@cardno.com.au E-mail daniel.mccallum@cardno.com.au

(invoice to geotech@cardno.com.au)

Date Results Required Standard TAT

			Ma	atrix			C	ontaine	ers/Pre	serva	tion	_	-		A	nalysis Requir	ed	_
Laboratory LIMS ID	Client Sample ID	Date Sampled	Soil	Water	Soil Jar (G) Nat. Orange	0.5-1.0 litre (G) Nat. Yellow	0.1-1.0 litre (P) Nat. Green	50mL VOA Vial (G) H ₂ SO ₄ Maroon	0.1-1.0 litre (P) H ₂ SO ₄ Maroon	0.2-1.0 litre (G) H ₂ SO ₄ Maroon	0.1-0.2 (P) Filtered?? Y=Yes, N=No (HNO3) Red	0.21 (P) NaOH Blue	Other	CL17	Asbestos ID			
1	TP201 0.1	24/08/2018				102		47							X			
2	TP202 0.1	24/08/2018		1		ĺ		1	1	1			1					
3	TP204 0.1	24/08/2018	⊠	1		[1	1	[[
Y	TP205 0.1	24/08/2018	×	1				[<u> </u>	<u> </u>	⊠			<u> </u>	
Ś	DUP1	24/08/2018	⊠		Į	Į		Į	Į	Į	ļ	.	<u>]</u>		ļ		ļļ	
				.j	ļ		.	ļ	ļ	ļ		ļ	ļ	ļ	ļ		<u> </u>	
				.]	ļ	.Į	ļ	ļ	Ļ	.		.	ļ					
					ļ			ļ	ļ			.						
					ļ		 	<u> .</u>		.								
				1				ļ					-			SGS EH	IS Alexa	ndria Laborat
								ļ		.			-	.	ļ			
								ļ	 				-		<u> </u>			
								ļ	ļ	ļ			1			SE1	8321	7 COC
																Receiv	ed: 29–	Aug - 2018
								Į	-									
		-		··			<u>.</u>	†	1	1	1	1	1	1	1	1	1 1	1
			1	1	1	1	 	1	1	1	1	1	1	1	1		T	
			1	1	*******	1	1	1	1	1		1	1	1	1		1	1

ANALYTICAL REPORT

- CLIENT DETAILS	·	LABORATORY DE	TAILS
Contact	Daniel McCallum	Manager	Huong Crawford
Client	CARDNO (NSW/ACT) PTY LTD	Laboratory	SGS Alexandria Environmental
Address	Unit 1 10 Denney Street Broadmeadow NSW 2292	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone Facsimile Email	61 2 4965 4555 61 2 4965 4666 daniel.mccallum@cardno.com.au	Telephone Facsimile Email	+61 2 8594 0400 +61 2 8594 0499 au.environmental.sydney@sgs.com
Project Order Number Samples	82219014 (Not specified) 12	SGS Reference Date Received Date Reported	SE183216 R1 29/8/2018 8/10/2018

COMMENTS

Accredited for compliance with ISO/IEC 17025 - Testing. NATA accredited laboratory 2562(4354).

This report cancels and supersedes the report No. SE183216 R0 dated 13.09.18 issued by SGS Environment, Health and Safety due to amended extration dates on VOC's and VPH's.

pH analysis was performed by SGS on sample outside of holding time.

Clay % subcontracted to SGS Cairns, 2/58 Comport St, Portsmith QLD 4870, NATA Accreditation Number: 2562, Site Number: 3146,

A portion of the sample supplied has been sub-sampled for asbestos according to SGS In-house procedures. We therefore cannot guarantee that the sub-sample is representative of the entire sample supplied. SGS Environmental Services recommends supplying approximately 50-100g of sample in a separate container

Asbestos analysed by Approved Identifier Yusuf Kuthpudin.

SIGNATORIES

Akheeqar Beniameen Chemist

Kamrul Ahsan Senior Chemist

Bennet Lo Senior Organic Chemist/Metals Chemist

kmIn

Ly Kim Ha Organic Section Head

No

Huong Crawford Production Manager

S. Ravendr.

Ravee Sivasubramaniam Hygiene Team Leader

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australia t +61 2 8594 0400 Australia f +61 2 8594 0499 www.sgs.com.au

SE183216 R1

VOC's in Soil [AN433] Tested: 3/9/2018

			TP101 0.1	TP102 0.1	TP103 0.1	TP104 0.1	TP105 0.1
				0.011	0.01	0.01	
			SOIL	SOIL	SOIL	SOIL	SOIL
			- 24/8/2018	- 24/8/2018	- 24/8/2018	- 24/8/2018	- 24/8/2018
PARAMETER	UOM	LOR	SE183216.001	SE183216.002	SE183216.003	SE183216.004	SE183216.005
Benzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Toluene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Ethylbenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
m/p-xylene	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o-xylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total Xylenes	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Total BTEX	mg/kg	0.6	<0.6	<0.6	<0.6	<0.6	<0.6
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1

			TP106 0.1	TP107 0.25	TP108 0.1	TP109 0.1	TP110 0.1
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			24/8/2018	24/8/2018	24/8/2018	24/8/2018	24/8/2018
PARAMETER	UOM	LOR	SE183216.006	SE183216.007	SE183216.008	SE183216.009	SE183216.010
Benzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Toluene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Ethylbenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
m/p-xylene	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o-xylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total Xylenes	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Total BTEX	mg/kg	0.6	<0.6	<0.6	<0.6	<0.6	<0.6
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1

			DUP2
			SOIL
			-
			24/8/2018
PARAMETER	UOM	LOR	SE183216.011
Benzene	mg/kg	0.1	<0.1
Toluene	mg/kg	0.1	<0.1
Ethylbenzene	mg/kg	0.1	<0.1
m/p-xylene	mg/kg	0.2	<0.2
o-xylene	mg/kg	0.1	<0.1
Total Xylenes	mg/kg	0.3	<0.3
Total BTEX	mg/kg	0.6	<0.6
Naphthalene	mg/kg	0.1	<0.1

SE183216 R1

Volatile Petroleum Hydrocarbons in Soil [AN433] Tested: 3/9/2018

			TP101 0.1	TP102 0.1	TP103 0.1	TP104 0.1	TP105 0.1
			SOIL	SOIL	SOIL	SOIL	SOIL
			- 24/8/2018	- 24/8/2018	- 24/8/2018	- 24/8/2018	- 24/8/2018
PARAMETER	UOM	LOR	SE183216.001	SE183216.002	SE183216.003	SE183216.004	SE183216.005
TRH C6-C9	mg/kg	20	<20	<20	<20	<20	<20
Benzene (F0)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
TRH C6-C10	mg/kg	25	<25	<25	<25	<25	<25
TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	<25	<25	<25

			TP106 0.1	TP107 0.25	TP108 0.1	TP109 0.1	TP110 0.1
			SOIL	SOIL	SOIL	SOIL	SOIL
			24/8/2018	24/8/2018	24/8/2018	24/8/2018	24/8/2018
PARAMETER	UOM	LOR	SE183216.006	SE183216.007	SE183216.008	SE183216.009	SE183216.010
TRH C6-C9	mg/kg	20	<20	<20	<20	<20	<20
Benzene (F0)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
TRH C6-C10	mg/kg	25	<25	<25	<25	<25	<25
TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	<25	<25	<25

			DUP2
			001
			SOIL
			24/8/2018
PARAMETER	UOM	LOR	SE183216.011
TRH C6-C9	mg/kg	20	<20
Benzene (F0)	mg/kg	0.1	<0.1
TRH C6-C10	mg/kg	25	<25
TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25

TRH (Total Recoverable Hydrocarbons) in Soil [AN403] Tested: 3/9/2018

			TP101 0.1	TP102 0.1	TP103 0.1	TP104 0.1	TP105 0.1
			SOIL	SOIL	SOIL	SOIL	SOIL
			24/8/2018	24/8/2018	24/8/2018	24/8/2018	24/8/2018
PARAMETER	UOM	LOR	SE183216.001	SE183216.002	SE183216.003	SE183216.004	SE183216.005
TRH C10-C14	mg/kg	20	<20	<20	<20	<20	<20
TRH C15-C28	mg/kg	45	<45	<45	<45	<45	<45
TRH C29-C36	mg/kg	45	<45	<45	<45	<45	<45
TRH C37-C40	mg/kg	100	<100	<100	<100	<100	<100
TRH >C10-C16	mg/kg	25	<25	<25	<25	<25	<25
TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	<25	<25	<25	<25	<25
TRH >C16-C34 (F3)	mg/kg	90	<90	<90	<90	<90	<90
TRH >C34-C40 (F4)	mg/kg	120	<120	<120	<120	<120	<120
TRH C10-C36 Total	mg/kg	110	<110	<110	<110	<110	<110
TRH C10-C40 Total (F bands)	mg/kg	210	<210	<210	<210	<210	<210

			TP106 0.1	TP107 0.25	TP108 0.1	TP109 0.1	TP110 0.1
			SOIL	SOIL	SOIL	SOIL	SOIL
			- 24/8/2018	- 24/8/2018	- 24/8/2018	- 24/8/2018	- 24/8/2018
PARAMETER	UOM	LOR	SE183216.006	SE183216.007	SE183216.008	SE183216.009	SE183216.010
TRH C10-C14	mg/kg	20	<20	<20	<20	<20	<20
TRH C15-C28	mg/kg	45	<45	<45	<45	<45	<45
TRH C29-C36	mg/kg	45	<45	<45	<45	<45	<45
TRH C37-C40	mg/kg	100	<100	<100	<100	<100	<100
TRH >C10-C16	mg/kg	25	<25	<25	<25	<25	<25
TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	<25	<25	<25	<25	<25
TRH >C16-C34 (F3)	mg/kg	90	<90	<90	<90	<90	<90
TRH >C34-C40 (F4)	mg/kg	120	<120	<120	<120	<120	<120
TRH C10-C36 Total	mg/kg	110	<110	<110	<110	<110	<110
TRH C10-C40 Total (F bands)	mg/kg	210	<210	<210	<210	<210	<210

			DUP2
			SOIL
			- 24/8/2018
PARAMETER	UOM	LOR	SE183216.011
TRH C10-C14	mg/kg	20	<20
TRH C15-C28	mg/kg	45	<45
TRH C29-C36	mg/kg	45	<45
TRH C37-C40	mg/kg	100	<100
TRH >C10-C16	mg/kg	25	<25
TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	<25
TRH >C16-C34 (F3)	mg/kg	90	<90
TRH >C34-C40 (F4)	mg/kg	120	<120
TRH C10-C36 Total	mg/kg	110	<110
TRH C10-C40 Total (F bands)	mg/kg	210	<210

PAH (Polynuclear Aromatic Hydrocarbons) in Soil [AN420] Tested: 3/9/2018

			TP101 0.1	TP102 0.1	TP103 0.1	TP104 0.1	TP105 0.1
			SOIL	SOIL	SOIL	001	001
			SUIL	SOIL	SOIL	SOIL	SOIL
			24/8/2018	24/8/2018	24/8/2018	24/8/2018	24/8/2018
PARAMETER	UOM	LOR	SE183216.001	SE183216.002	SE183216.003	SE183216.004	SE183216.005
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td></lor=0<>	TEQ (mg/kg)	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td></lor=lor<>	TEQ (mg/kg)	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td></lor=lor>	TEQ (mg/kg)	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Total PAH (18)	mg/kg	0.8	<0.8	<0.8	<0.8	<0.8	<0.8
Total PAH (NEPM/WHO 16)	mg/kg	0.8	<0.8	<0.8	<0.8	<0.8	<0.8

			TP106 0.1	TP107 0.25	TP108 0.1	TP109 0.1	TP110 0.1
			SOIL	SOIL	SOIL	SOIL	SOIL
			- SUIL	SOIL	SOIL	- 501L	SOIL
			24/8/2018	24/8/2018	24/8/2018	24/8/2018	24/8/2018
PARAMETER	UOM	LOR	SE183216.006	SE183216.007	SE183216.008	SE183216.009	SE183216.010
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td></lor=0<>	TEQ (mg/kg)	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td></lor=lor<>	TEQ (mg/kg)	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td></lor=lor>	TEQ (mg/kg)	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Total PAH (18)	mg/kg	0.8	<0.8	<0.8	<0.8	<0.8	<0.8
Total PAH (NEPM/WHO 16)	mg/kg	0.8	<0.8	<0.8	<0.8	<0.8	<0.8

ANALYTICAL RESULTS

PAH (Polynuclear Aromatic Hydrocarbons) in Soil [AN420] Tested: 3/9/2018 (continued)

			DUP2
			SOIL
			- 24/8/2018
PARAMETER	UOM	LOR	SE183216.011
Naphthalene	mg/kg	0.1	<0.1
2-methylnaphthalene	mg/kg	0.1	<0.1
1-methylnaphthalene	mg/kg	0.1	<0.1
Acenaphthylene	mg/kg	0.1	<0.1
Acenaphthene	mg/kg	0.1	<0.1
Fluorene	mg/kg	0.1	<0.1
Phenanthrene	mg/kg	0.1	<0.1
Anthracene	mg/kg	0.1	<0.1
Fluoranthene	mg/kg	0.1	<0.1
Pyrene	mg/kg	0.1	<0.1
Benzo(a)anthracene	mg/kg	0.1	<0.1
Chrysene	mg/kg	0.1	<0.1
Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1
Benzo(k)fluoranthene	mg/kg	0.1	<0.1
Benzo(a)pyrene	mg/kg	0.1	<0.1
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1
Dibenzo(ah)anthracene	mg/kg	0.1	<0.1
Benzo(ghi)perylene	mg/kg	0.1	<0.1
Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td></lor=0<>	TEQ (mg/kg)	0.2	<0.2
Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td><0.3</td></lor=lor<>	TEQ (mg/kg)	0.3	<0.3
Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td></lor=lor>	TEQ (mg/kg)	0.2	<0.2
Total PAH (18)	mg/kg	0.8	<0.8
Total PAH (NEPM/WHO 16)	mg/kg	0.8	<0.8

OC Pesticides in Soil [AN420] Tested: 3/9/2018

			TP101 0.1	TP102 0.1	TP103 0.1	TP104 0.1	TP105 0.1
			SOIL	SOIL	SOIL	SOIL	SOIL
			-	-	-	-	-
			24/8/2018	24/8/2018	24/8/2018	24/8/2018	24/8/2018
PARAMETER	UOM	LOR	SE183216.001	SE183216.002	SE183216.003	SE183216.004	SE183216.005
Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Lindane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Beta BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Delta BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor epoxide	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
o,p'-DDE	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Gamma Chlordane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha Chlordane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
trans-Nonachlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
p,p'-DDE	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Endrin	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o,p'-DDD	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
o,p'-DDT	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Beta Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
p,p'-DDD	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
p,p'-DDT	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan sulphate	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Ketone	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Isodrin	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Mirex	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total CLP OC Pesticides	mg/kg	1	<1	<1	<1	<1	<1

OC Pesticides in Soil [AN420] Tested: 3/9/2018 (continued)

			TP106 0.1	TP107 0.25	TP108 0.1	TP109 0.1	TP110 0.1
			SOIL - 24/8/2018	SOIL - 24/8/2018	SOIL - 24/8/2018	SOIL - 24/8/2018	SOIL - 24/8/2018
PARAMETER	UOM	LOR	SE183216.006	SE183216.007	SE183216.008	SE183216.009	SE183216.010
Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Lindane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Beta BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Delta BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor epoxide	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
o,p'-DDE	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Gamma Chlordane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha Chlordane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
trans-Nonachlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
p,p'-DDE	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Endrin	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o,p'-DDD	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
o,p'-DDT	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Beta Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
p,p'-DDD	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
p,p'-DDT	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan sulphate	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Ketone	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Isodrin	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Mirex	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total CLP OC Pesticides	mg/kg	1	<1	<1	<1	<1	<1

ANALYTICAL RESULTS

SE183216 R1

OC Pesticides in Soil [AN420] Tested: 3/9/2018 (continued)

			DUP2
			-
			24/8/2018
PARAMETER	UOM	LOR	SE183216.011
Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1
Alpha BHC	mg/kg	0.1	<0.1
Lindane	mg/kg	0.1	<0.1
Heptachlor	mg/kg	0.1	<0.1
Aldrin	mg/kg	0.1	<0.1
Beta BHC	mg/kg	0.1	<0.1
Delta BHC	mg/kg	0.1	<0.1
Heptachlor epoxide	mg/kg	0.1	<0.1
o,p'-DDE	mg/kg	0.1	<0.1
Alpha Endosulfan	mg/kg	0.2	<0.2
Gamma Chlordane	mg/kg	0.1	<0.1
Alpha Chlordane	mg/kg	0.1	<0.1
trans-Nonachlor	mg/kg	0.1	<0.1
p,p'-DDE	mg/kg	0.1	<0.1
Dieldrin	mg/kg	0.2	<0.2
Endrin	mg/kg	0.2	<0.2
o,p'-DDD	mg/kg	0.1	<0.1
o,p'-DDT	mg/kg	0.1	<0.1
Beta Endosulfan	mg/kg	0.2	<0.2
p,p'-DDD	mg/kg	0.1	<0.1
p,p'-DDT	mg/kg	0.1	<0.1
Endosulfan sulphate	mg/kg	0.1	<0.1
Endrin Aldehyde	mg/kg	0.1	<0.1
Methoxychlor	mg/kg	0.1	<0.1
Endrin Ketone	mg/kg	0.1	<0.1
Isodrin	mg/kg	0.1	<0.1
Mirex	mg/kg	0.1	<0.1
Total CLP OC Pesticides	mg/kg	1	<1

OP Pesticides in Soil [AN420] Tested: 3/9/2018

			TP101 0.1	TP102 0.1	TP103 0.1	TP104 0.1	TP105 0.1
			SOIL - 24/8/2018	SOIL - 24/8/2018	SOIL - 24/8/2018	SOIL - 24/8/2018	SOIL - 24/8/2018
PARAMETER	UOM	LOR	SE183216.001	SE183216.002	SE183216.003	SE183216.004	SE183216.005
Dichlorvos	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Dimethoate	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Diazinon (Dimpylate)	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Fenitrothion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Malathion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Bromophos Ethyl	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Methidathion	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Ethion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Total OP Pesticides*	mg/kg	1.7	<1.7	<1.7	<1.7	<1.7	<1.7

			TP106 0.1	TP107 0.25	TP108 0.1	TP109 0.1	TP110 0.1
			SOIL	SOIL	SOIL	SOIL	SOIL
			- 24/8/2018	24/8/2018	24/8/2018	24/8/2018	24/8/2018
PARAMETER	UOM	LOR	SE183216.006	SE183216.007	SE183216.008	SE183216.009	SE183216.010
Dichlorvos	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Dimethoate	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Diazinon (Dimpylate)	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Fenitrothion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Malathion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Bromophos Ethyl	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Methidathion	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Ethion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Total OP Pesticides*	mg/kg	1.7	<1.7	<1.7	<1.7	<1.7	<1.7

PARAMETER	UOM	LOR	DUP2 SOIL - 24/8/2018 SE183216.011
Dichlorvos	mg/kg	0.5	<0.5
Dimethoate	mg/kg	0.5	<0.5
Diazinon (Dimpylate)	mg/kg	0.5	<0.5
Fenitrothion	mg/kg	0.2	<0.2
Malathion	mg/kg	0.2	<0.2
Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2
Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2
Bromophos Ethyl	mg/kg	0.2	<0.2
Methidathion	mg/kg	0.5	<0.5
Ethion	mg/kg	0.2	<0.2
Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2
Total OP Pesticides*	mg/kg	1.7	<1.7

SE183216 R1

PCBs in Soil [AN420] Tested: 3/9/2018

			TP101 0.1	TP102 0.1	TP103 0.1	TP104 0.1	TP105 0.1
			SOIL	SOIL	SOIL	SOIL	SOIL
			24/8/2018	24/8/2018	24/8/2018	24/8/2018	24/8/2018
PARAMETER	UOM	LOR	SE183216.001	SE183216.002	SE183216.003	SE183216.004	SE183216.005
Arochlor 1016	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1221	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1232	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1242	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1248	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1254	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1260	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1262	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1268	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Total PCBs (Arochlors)	mg/kg	1	<1	<1	<1	<1	<1

			TP106 0.1	TP107 0.25	TP108 0.1	TP109 0.1	TP110 0.1
		LOR	SOIL - 24/8/2018	SOIL - 24/8/2018	SOIL - 24/8/2018	SOIL - 24/8/2018	SOIL - 24/8/2018
PARAMETER	UOM		SE183216.006	SE183216.007	SE183216.008	SE183216.009	SE183216.010
Arochlor 1016	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1221	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1232	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1242	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1248	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1254	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1260	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1262	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1268	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Total PCBs (Arochlors)	mg/kg	1	<1	<1	<1	<1	<1

			DUP2
PARAMETER	UOM	LOR	SOIL - 24/8/2018 SE183216.011
Arochlor 1016	mg/kg	0.2	<0.2
Arochlor 1221	mg/kg	0.2	<0.2
Arochlor 1232	mg/kg	0.2	<0.2
Arochlor 1242	mg/kg	0.2	<0.2
Arochlor 1248	mg/kg	0.2	<0.2
Arochlor 1254	mg/kg	0.2	<0.2
Arochlor 1260	mg/kg	0.2	<0.2
Arochlor 1262	mg/kg	0.2	<0.2
Arochlor 1268	mg/kg	0.2	<0.2
Total PCBs (Arochlors)	mg/kg	1	<1

pH in soil (1:5) [AN101] Tested: 3/9/2018

			TP103 0.1
			SOIL
			- 24/8/2018
PARAMETER	UOM	LOR	SE183216.003
pH (CaCl2)*	pH Units	0.1	4.1

ANALYTICAL RESULTS

Exchangeable Cations and Cation Exchange Capacity (CEC/ESP/SAR) [AN122] Tested: 3/9/2018

PARAMETER	UOM	LOR	TP103 0.1 SOIL - 24/8/2018 SE183216.003
Exchangeable Sodium, Na	mg/kg	2	8
Exchangeable Sodium, Na	meq/100g	0.01	0.04
Exchangeable Sodium Percentage*	%	0.1	5.7
Exchangeable Potassium, K	mg/kg	2	23
Exchangeable Potassium, K	meq/100g	0.01	0.06
Exchangeable Potassium Percentage*	%	0.1	9.5
Exchangeable Calcium, Ca	mg/kg	2	68
Exchangeable Calcium, Ca	meq/100g	0.01	0.34
Exchangeable Calcium Percentage*	%	0.1	54.0
Exchangeable Magnesium, Mg	mg/kg	2	24
Exchangeable Magnesium, Mg	meq/100g	0.02	0.19
Exchangeable Magnesium Percentage*	%	0.1	30.7
Cation Exchange Capacity	meq/100g	0.02	0.63

ANALYTICAL RESULTS

SE183216 R1

Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES [AN040/AN320] Tested: 3/9/2018

			TP101 0.1	TP102 0.1	TP103 0.1	TP104 0.1	TP105 0.1
			SOIL	SOIL	SOIL	SOIL	SOIL
			24/8/2018	24/8/2018	24/8/2018	24/8/2018	24/8/2018
PARAMETER	UOM	LOR	SE183216.001	SE183216.002	SE183216.003	SE183216.004	SE183216.005
Arsenic, As	mg/kg	1	<1	1	2	2	3
Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Chromium, Cr	mg/kg	0.3	2.7	1.3	3.0	3.5	1.5
Copper, Cu	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Lead, Pb	mg/kg	1	2	2	3	2	2
Nickel, Ni	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Zinc, Zn	mg/kg	2	<2.0	2.4	3.0	2.5	<2.0

			TP106 0.1	TP107 0.25	TP108 0.1	TP109 0.1	TP110 0.1
			SOIL	SOIL	SOIL	SOIL	SOIL
			-	-	-	-	-
PARAMETER	UOM	LOR	24/8/2018 SE183216.006	24/8/2018 SE183216.007	24/8/2018 SE183216.008	24/8/2018 SE183216.009	24/8/2018 SE183216.010
Arsenic, As	mg/kg	1	1	<1	<1	1	2
Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Chromium, Cr	mg/kg	0.3	0.9	2.3	0.5	1.4	1.0
Copper, Cu	mg/kg	0.5	<0.5	<0.5	0.8	<0.5	0.5
Lead, Pb	mg/kg	1	1	<1	<1	1	2
Nickel, Ni	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Zinc, Zn	mg/kg	2	4.3	<2.0	2.6	2.5	3.2

			DUP2
			SOIL
			- 24/8/2018
PARAMETER	UOM	LOR	SE183216.011
Arsenic, As	mg/kg	1	1
Cadmium, Cd	mg/kg	0.3	<0.3
Chromium, Cr	mg/kg	0.3	2.8
Copper, Cu	mg/kg	0.5	<0.5
Lead, Pb	mg/kg	1	2
Nickel, Ni	mg/kg	0.5	<0.5
Zinc, Zn	mg/kg	2	<2.0

SE183216 R1

Mercury in Soil [AN312] Tested: 3/9/2018

			TP101 0.1	TP102 0.1	TP103 0.1	TP104 0.1	TP105 0.1
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			24/8/2018	24/8/2018	24/8/2018	24/8/2018	24/8/2018
PARAMETER	UOM	LOR	SE183216.001	SE183216.002	SE183216.003	SE183216.004	SE183216.005
Mercury	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05

			TP106 0.1	TP107 0.25	TP108 0.1	TP109 0.1	TP110 0.1
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			24/8/2018	24/8/2018	24/8/2018	24/8/2018	24/8/2018
PARAMETER	UOM	LOR	SE183216.006	SE183216.007	SE183216.008	SE183216.009	SE183216.010
Mercury	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05

			DUP2
			SOIL
			24/8/2018
PARAMETER	UOM	LOR	SE183216.011
Mercury	mg/kg	0.05	<0.05

SE183216 R1

Moisture Content [AN002] Tested: 3/9/2018

			TP101 0.1	TP102 0.1	TP103 0.1	TP104 0.1	TP105 0.1
			SOIL	SOIL	SOIL	SOIL	SOIL
			24/8/2018	24/8/2018	24/8/2018	24/8/2018	24/8/2018
PARAMETER	UOM	LOR	SE183216.001	SE183216.002	SE183216.003	SE183216.004	SE183216.005
% Moisture	%w/w	0.5	5.8	7.7	6.5	6.6	9.6

			TP106 0.1	TP107 0.25	TP108 0.1	TP109 0.1	TP110 0.1
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			24/8/2018	24/8/2018	24/8/2018	24/8/2018	24/8/2018
PARAMETER	UOM	LOR	SE183216.006	SE183216.007	SE183216.008	SE183216.009	SE183216.010
% Moisture	%w/w	0.5	8.0	13	18	9.2	13

			DUP2
			SOIL
			24/8/2018
PARAMETER	UOM	LOR	SE183216.011
% Moisture	%w/w	0.5	8.0

Fibre Identification in soil [AN602] Tested: 4/9/2018

			TP101 0.1	TP109 0.1
			SOIL	SOIL
			24/8/2018	24/8/2018
PARAMETER	UOM	LOR	SE183216.001	SE183216.009
Asbestos Detected	No unit	-	No	No
Estimated Fibres*	%w/w	0.01	<0.01	<0.01

VOCs in Water [AN433] Tested: 29/8/2018

			RINS 24.08.2018
			WATER - 24/8/2018
PARAMETER	UOM	LOR	SE183216.012
Benzene	µg/L	0.5	<0.5
Toluene	µg/L	0.5	<0.5
Ethylbenzene	µg/L	0.5	<0.5
m/p-xylene	µg/L	1	<1
o-xylene	μg/L	0.5	<0.5
Total Xylenes	μg/L	1.5	<1.5
Total BTEX	μg/L	3	<3
Naphthalene	μg/L	0.5	<0.5

Volatile Petroleum Hydrocarbons in Water [AN433] Tested: 29/8/2018

			RINS 24.08.2018
			WATER
			- 24/8/2018
PARAMETER	UOM	LOR	SE183216.012
TRH C6-C9	μg/L	40	<40
Benzene (F0)	µg/L	0.5	<0.5
TRH C6-C10	μg/L	50	<50
TRH C6-C10 minus BTEX (F1)	µg/L	50	<50

ANALYTICAL RESULTS

SE183216 R1

TRH (Total Recoverable Hydrocarbons) in Water [AN403] Tested: 31/8/2018

			RINS 24.08.2018
			WATER - 24/8/2018
PARAMETER	UOM	LOR	SE183216.012
TRH C10-C14	µg/L	50	<50
TRH C15-C28	µg/L	200	<200
TRH C29-C36	µg/L	200	<200
TRH C37-C40	µg/L	200	<200
TRH >C10-C16	µg/L	60	<60
TRH >C16-C34 (F3)	µg/L	500	<500
TRH >C34-C40 (F4)	µg/L	500	<500
TRH C10-C36	µg/L	450	<450
TRH C10-C40	µg/L	650	<650
TRH >C10-C16 - Naphthalene (F2)	µg/L	60	<60

Sample Subcontracted [] Tested: 13/9/2018

			TP103 0.1
			SOIL
			- 24/8/2018
PARAMETER	UOM	LOR	SE183216.003
Sample Subcontracted*	No unit	-	Subcontracted
SGS Cairns*	No unit	-	Subcontracted

METHOD	METHODOLOGY SUMMARY
AN002	The test is carried out by drying (at either 40°C or 105°C) a known mass of sample in a weighed evaporating basin. After fully dry the sample is re-weighed. Samples such as sludge and sediment having high percentages of moisture will take some time in a drying oven for complete removal of water.
AN040/AN320	A portion of sample is digested with nitric acid to decompose organic matter and hydrochloric acid to complete the digestion of metals. The digest is then analysed by ICP OES with metals results reported on the dried sample basis. Based on USEPA method 200.8 and 6010C.
AN040	A portion of sample is digested with Nitric acid to decompose organic matter and Hydrochloric acid to complete the digestion of metals and then filtered for analysis by ASS or ICP as per USEPA Method 200.8.
AN101	pH in Soil Sludge Sediment and Water: pH is measured electrometrically using a combination electrode and is calibrated against 3 buffers purchased commercially. For soils, sediments and sludges, an extract with water (or 0.01M CaCl2) is made at a ratio of 1:5 and the pH determined and reported on the extract. Reference APHA 4500-H+.
AN122	Exchangeable Cations, CEC and ESP: Soil sample is extracted in 1M Ammonium Acetate at pH=7 (or 1M Ammonium Chloride at pH=7) with cations (Na, K, Ca & Mg) then determined by ICP OES/ICP MS and reported as Exchangeable Cations. For saline soils, these results can be corrected for water soluble cations and reported as Exchangeable cations in meq/100g or soil can be pre-treated (aqueous ethanol/aqueous glycerol) prior to extraction. Cation Exchange Capacity (CEC) is the sum of the exchangeable cations in meq/100g.
AN122	The Exchangeable Sodium Percentage (ESP) is calculated as the exchangeable sodium divided by the CEC (all in meq/100g) times 100. ESP can be used to categorise the sodicity of the soil as below:
	ESP < 6%non-sodicESP 6-15%sodicESP >15%strongly sodic
	Method is referenced to Rayment and Lyons, 2011, sections 15D3 and 15N1
AN312	Mercury by Cold Vapour AAS in Soils: After digestion with nitric acid, hydrogen peroxide and hydrochloric acid, mercury ions are reduced by stannous chloride reagent in acidic solution to elemental mercury. This mercury vapour is purged by nitrogen into a cold cell in an atomic absorption spectrometer or mercury analyser. Quantification is made by comparing absorbances to those of the calibration standards. Reference APHA 3112/3500
AN403	Total Recoverable Hydrocarbons: Determination of Hydrocarbons by gas chromatography after a solvent extraction. Detection is by flame ionisation detector (FID) that produces an electronic signal in proportion to the combustible matter passing through it. Total Recoverable Hydrocarbons (TRH) are routinely reported as four alkane groupings based on the carbon chain length of the compounds: C6-C9, C10-C14, C15-C28 and C29-C36 and in recognition of the NEPM 1999 (2013), >C10-C16 (F2), >C16-C34 (F3) and >C34-C40 (F4). F2 is reported directly and also corrected by subtracting Naphthalene (from VOC method AN433) where available.
AN403	Additionally, the volatile C6-C9 fraction may be determined by a purge and trap technique and GC/MS because of the potential for volatiles loss. Total Recoverable Hydrocarbons - Silica (TRH-Si) follows the same method of analysis after silica gel cleanup of the solvent extract. Aliphatic/Aromatic Speciation follows the same method of analysis after fractionation of the solvent extract over silica with differential polarity of the eluent solvents.
AN403	The GC/FID method is not well suited to the analysis of refined high boiling point materials (ie lubricating oils or greases) but is particularly suited for measuring diesel, kerosene and petrol if care to control volatility is taken. This method will detect naturally occurring hydrocarbons, lipids, animal fats, phenols and PAHs if they are present at sufficient levels, dependent on the use of specific cleanup/fractionation techniques. Reference USEPA 3510B, 8015B.
AN420	(SVOCs) including OC, OP, PCB, Herbicides, PAH, Phthalates and Speciated Phenols (etc) in soils, sediments and waters are determined by GCMS/ECD technique following appropriate solvent extraction process (Based on USEPA 3500C and 8270D).
AN420	SVOC Compounds: Semi-Volatile Organic Compounds (SVOCs) including OC, OP, PCB, Herbicides, PAH, Phthalates and Speciated Phenols in soils, sediments and waters are determined by GCMS/ECD technique following appropriate solvent extraction process (Based on USEPA 3500C and 8270D).
AN433	VOCs and C6-C9 Hydrocarbons by GC-MS P&T: VOC's are volatile organic compounds. The sample is presented to a gas chromatograph via a purge and trap (P&T) concentrator and autosampler and is detected with a Mass Spectrometer (MSD). Solid samples are initially extracted with methanol whilst liquid samples are processed directly. References: USEPA 5030B, 8020A, 8260.
AN602	Qualitative identification of chrysotile, amosite and crocidolite in bulk samples by polarised light microscopy (PLM) in conjunction with dispersion staining (DS). AS4964 provides the basis for this document. Unequivocal identification of the asbestos minerals present is made by obtaining sufficient diagnostic 'clues', which provide a reasonable degree of certainty, dispersion staining is a mandatory 'clue' for positive identification. If sufficient 'clues' are absent, then positive identification of asbestos is not possible. This procedure requires removal of suspect fibres/bundles from the sample which cannot be returned.

AN602	Fibres/material that cannot be unequivocably identified as one of the three asbestos forms, will be reported as unknown mineral fibres (umf) The fibres detected may or may not be asbestos fibres.
AN602	AS4964.2004 Method for the Qualitative Identification of Asbestos in Bulk Samples, Section 8.4, Trace Analysis Criteria, Note 4 states:"Depending upon sample condition and fibre type, the detection limit of this technique has been found to lie generally in the range of 1 in 1,000 to 1 in 10,000 parts by weight, equivalent to 1 to 0.1 g/kg."
AN602	The sample can be reported "no asbestos found at the reporting limit of 0.1 g/kg" (<0.01%w/w) where AN602 section 4.5 of this method has been followed, and if-
	 (a) no trace asbestos fibres have been detected (i.e. no 'respirable' fibres): (b) the estimated weight of non-respirable asbestos fibre bundles and/or the estimated weight of asbestos in asbestos-containing materials are found to be less than 0.1g/kg: and (c) these non-respirable asbestos fibre bundles and/or the asbestos containing materials are only visible under stereo-microscope viewing conditions.

FOOTNOTES

*	NATA accreditation does not cover	-	Not analysed.	UOM	Unit of Measure.
	the performance of this service.	NVL	Not validated.	LOR	Limit of Reporting.
**	Indicative data, theoretical holding	IS	Insufficient sample for analysis.	↑↓	Raised/lowered Limit of
	time exceeded.	LNR	Sample listed, but not received.		Reporting.

Samples analysed as received.

Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calculated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

Note that in terms of units of radioactivity:

- a. 1 Bq is equivalent to 27 pCi
- b. 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929.

The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here : http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical%20Documents/MP-AU-ENV-QU-022%20QA%20QC%20Plan.pdf

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sqs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This report must not be reproduced, except in full.

ANALYTICAL REPORT

CLIENT DETAILS		LABORATORY DETAI	LS
Contact	Daniel McCallum	Manager	Huong Crawford
Client	CARDNO (NSW/ACT) PTY LTD	Laboratory	SGS Alexandria Environmental
Address	Unit 1 10 Denney Street Broadmeadow NSW 2292	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	61 2 4965 4555	Telephone	+61 2 8594 0400
Facsimile	61 2 4965 4666	Facsimile	+61 2 8594 0499
Email	daniel.mccallum@cardno.com.au	Email	au.environmental.sydney@sgs.com
Project	82219014	SGS Reference	SE183216 R1
Order Number	(Not specified)	Date Received	29 Aug 2018
Samples	2	Date Reported	08 Oct 2018

- COMMENTS

Accredited for compliance with ISO/IEC 17025 - Testing. NATA accredited laboratory 2562(4354).

This report cancels and supersedes the report No. SE183216 R0 dated 13.09.18 issued by SGS Environment, Health and Safety due to amended extration dates on VOC's and VPH's.

pH analysis was performed by SGS on sample outside of holding time.

Clay % subcontracted to SGS Cairns, 2/58 Comport St, Portsmith QLD 4870, NATA Accreditation Number: 2562, Site Number: 3146,

A portion of the sample supplied has been sub-sampled for asbestos according to SGS In-house procedures. We therefore cannot guarantee that the sub-sample is representative of the entire sample supplied. SGS Environmental Services recommends supplying approximately 50-100g of sample in a separate container

Asbestos analysed by Approved Identifier Yusuf Kuthpudin.

SIGNATORIES

Akheeqar Beniameen Chemist

Kamrul Ahsan Senior Chemist

Bennet Lo Senior Organic Chemist/Metals Chemis

kmln

Ly Kim Ha Organic Section Head

lon

Huong Crawford Production Manager

S. Ravendr.

Ravee Sivasubramaniam Hygiene Team Leader

Australia

Australia

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 t +61 2 8594 0400 f +61 2 8594 0499

Member of the SGS Group

www.sgs.com.au

ANALYTICAL REPORT

RESULTS -	ation in soil				Method AN	502
Laboratory Reference	Client Reference	Matrix	Sample Description	Date Sampled	Fibre Identification	Est.%w/w*
SE183216.001	TP101 0.1	Soil	44g Sand,Soil	24 Aug 2018	No Asbestos Found	<0.01
SE183216.009	TP109 0.1	Soil	50g Sand,Soil	24 Aug 2018	No Asbestos Found Organic Fibres Detected	<0.01

METHOD SUMMARY

METHOD	METHODOLOGY SUMMARY
AN602	Qualitative identification of chrysotile, amosite and crocidolite in bulk samples by polarised light microscopy (PLM) in conjunction with dispersion staining (DS). AS4964 provides the basis for this document. Unequivocal identification of the asbestos minerals present is made by obtaining sufficient diagnostic `clues`, which provide a reasonable degree of certainty, dispersion staining is a mandatory `clue` for positive identification. If sufficient `clues` are absent, then positive identification of asbestos is not possible. This procedure requires removal of suspect fibres/bundles from the sample which cannot be returned.
AN602	Fibres/material that cannot be unequivocably identified as one of the three asbestos forms, will be reported as unknown mineral fibres (umf) The fibres detected may or may not be asbestos fibres.
AN602	AS4964.2004 Method for the Qualitative Identification of Asbestos in Bulk Samples, Section 8.4, Trace Analysis Criteria, Note 4 states: "Depending upon sample condition and fibre type, the detection limit of this technique has been found to lie generally in the range of 1 in 1,000 to 1 in 10,000 parts by weight, equivalent to 1 to 0.1 g/kg."
AN602	The sample can be reported "no asbestos found at the reporting limit of 0.1 g/kg" (<0.01%w/w) where AN602 section 4.5 of this method has been followed, and if- (a) no trace asbestos fibres have been detected (i.e. no 'respirable' fibres):
	 (b) The estimated weight of non-respirable asbestos fibre bundles and/or the estimated weight of asbestos in asbestos-containing materials are found to be less than 0.1g/kg: and (c) these non-respirable asbestos fibre bundles and/or the asbestos containing materials are only visible under stereo-microscope viewing conditions.

Amosite Brown Asbestos NA Not Analysed White Asbestos Chrysotile INR --Listed. Not Required Crocidolite Blue Asbestos * -NATA accreditation does not cover the performance of this service . ** Amosite and/or Crocidolite Indicative data, theoretical holding time exceeded. Amphiboles

(In reference to soil samples only) This report does not comply with the analytical reporting recommendations in the Western Australian Department of Health Guidelines for the Assessment and Remediation and Management of Asbestos Contaminated sites in Western Australia - May 2009.

Sampled by the client.

FOOTNOTES -

Where reported: 'Asbestos Detected': Asbestos detected by polarised light microscopy, including dispersion staining. Where reported: 'No Asbestos Found': No Asbestos Found by polarised light microscopy, including dispersion staining. Where reported: 'UMF Detected': Mineral fibres of unknown type detected by polarised light microscopy, including dispersion staining. Confirmation by another independent analytical technique may be necessary.

Even after disintegration it can be very difficult, or impossible, to detect the presence of asbestos in some asbestos -containing bulk materials using polarised light microscopy. This is due to the low grade or small length or diameter of asbestos fibres present in the material, or to the fact that very fine fibres have been distributed intimately throughout the materials.

The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here : http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical%20Documents/MP-AU-ENV-QU-022%20QA%20QC%20Plan.pdf

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This test report shall not be reproduced, except in full.

STATEMENT OF QA/QC PERFORMANCE

CLIENT DETAILS		LABORATORY DETAI	LS
Contact	Daniel McCallum	Manager	Huong Crawford
Client	CARDNO (NSW/ACT) PTY LTD	Laboratory	SGS Alexandria Environmental
Address	Unit 1 10 Denney Street Broadmeadow NSW 2292	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	61 2 4965 4555	Telephone	+61 2 8594 0400
Facsimile	61 2 4965 4666	Facsimile	+61 2 8594 0499
Email	daniel.mccallum@cardno.com.au	Email	au.environmental.sydney@sgs.com
Project	82219014	SGS Reference	SE183216 R1
Order Number	(Not specified)	Date Received	29 Aug 2018
Samples	12	Date Reported	08 Oct 2018

COMMENTS

All the laboratory data for each environmental matrix was compared to SGS' stated Data Quality Objectives (DQO). Comments arising from the comparison were made and are reported below.

The data relating to sampling was taken from the Chain of Custody document and was supplied by the Client. This QA/QC Statement must be read in conjunction with the referenced Analytical Report. The Statement and the Analytical Report must not be reproduced except in full.

All Data Quality Objectives were met with the exception of the following:

Extraction Date

pH in soil (1:5)

1 item

Samples clearly labelled	Yes	Complete documentation received	Yes	
Sample container provider	SGS	Sample cooling method	Ice Bricks	
Samples received in correct containers	Yes	Sample counts by matrix	12 Soil	
Date documentation received	29/8/2018	Type of documentation received	COC	
Samples received in good order	Yes	Samples received without headspace	Yes	
Sample temperature upon receipt	6.1°C	Sufficient sample for analysis	Yes	
Furnaround time requested	Standard			

SGS Australia Pty Ltd ABN 44 000 964 278

SAMPLE SUMMARY

Environment, Health and Safety

Unit 16 33 Maddox St Alexandria NSW 2015 PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Australia t +61 2 Australia f +61 2

t +61 2 8594 0400 www.sgs.com.au f +61 2 8594 0499

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or **Red** with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

-	d Cation Exchange Capacit					_		ME-(AU)-[ENV]AI
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
P103 0.1	SE183216.003	LB155649	24 Aug 2018	29 Aug 2018	21 Sep 2018	03 Sep 2018	21 Sep 2018	04 Sep 2018
ore Identification in soil							Method:	ME-(AU)-[ENV]AI
ample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
P101 0.1	SE183216.001	LB155838	24 Aug 2018	29 Aug 2018	24 Aug 2019	04 Sep 2018	24 Aug 2019	05 Sep 2018
P109 0.1	SE183216.009	LB155838	24 Aug 2018	29 Aug 2018	24 Aug 2019	04 Sep 2018	24 Aug 2019	05 Sep 2018
ercury in Soil							Method:	ME-(AU)-[ENV]A
ample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
P101 0.1	SE183216.001	LB155630	24 Aug 2018	29 Aug 2018	21 Sep 2018	03 Sep 2018	21 Sep 2018	04 Sep 2018
P102 0.1	SE183216.002	LB155630	24 Aug 2018	29 Aug 2018	21 Sep 2018	03 Sep 2018	21 Sep 2018	04 Sep 2018
P103 0.1	SE183216.003	LB155630	24 Aug 2018	29 Aug 2018	21 Sep 2018	03 Sep 2018	21 Sep 2018	04 Sep 2018
P104 0.1	SE183216.004	LB155630	24 Aug 2018	29 Aug 2018	21 Sep 2018	03 Sep 2018	21 Sep 2018	04 Sep 2018
P105 0.1	SE183216.005	LB155630	24 Aug 2018	29 Aug 2018	21 Sep 2018	03 Sep 2018	21 Sep 2018	04 Sep 2018
P106 0.1	SE183216.006	LB155630	24 Aug 2018	29 Aug 2018	21 Sep 2018	03 Sep 2018	21 Sep 2018	04 Sep 2018
P107 0.25	SE183216.007	LB155630	24 Aug 2018	29 Aug 2018	21 Sep 2018	03 Sep 2018	21 Sep 2018	04 Sep 2018
P108 0.1	SE183216.008	LB155630	24 Aug 2018	29 Aug 2018	21 Sep 2018	03 Sep 2018	21 Sep 2018	04 Sep 2018
P109 0.1	SE183216.009	LB155630	24 Aug 2018	29 Aug 2018	21 Sep 2018	03 Sep 2018	21 Sep 2018	04 Sep 2018
P110 0.1	SE183216.010	LB155630	24 Aug 2018	29 Aug 2018	21 Sep 2018	03 Sep 2018	21 Sep 2018	04 Sep 2010 04 Sep 2018
UP2	SE183216.010	LB155630	24 Aug 2018 24 Aug 2018	29 Aug 2018	21 Sep 2018	03 Sep 2018	21 Sep 2018	04 Sep 2018 04 Sep 2018
	3E103210.011	EB155050	24 Aug 2018	29 Aug 2018	21 Sep 2016	05 Sep 2018		
oisture Content	Sample No.	QC Ref	Sampled	Received	Extraction Duo	Extracted	Analysis Due	ME-(AU)-[ENV]A
ample Name	Sample No.				Extraction Due	Extracted		Analysed
P101 0.1	SE183216.001	LB155628	24 Aug 2018	29 Aug 2018	07 Sep 2018	03 Sep 2018	08 Sep 2018	04 Sep 2018
P102 0.1	SE183216.002	LB155628	24 Aug 2018	29 Aug 2018	07 Sep 2018	03 Sep 2018	08 Sep 2018	04 Sep 2018
P103 0.1	SE183216.003	LB155628	24 Aug 2018	29 Aug 2018	07 Sep 2018	03 Sep 2018	08 Sep 2018	04 Sep 2018
P104 0.1	SE183216.004	LB155628	24 Aug 2018	29 Aug 2018	07 Sep 2018	03 Sep 2018	08 Sep 2018	04 Sep 2018
P105 0.1	SE183216.005	LB155628	24 Aug 2018	29 Aug 2018	07 Sep 2018	03 Sep 2018	08 Sep 2018	04 Sep 2018
P106 0.1	SE183216.006	LB155628	24 Aug 2018	29 Aug 2018	07 Sep 2018	03 Sep 2018	08 Sep 2018	04 Sep 2018
P107 0.25	SE183216.007	LB155628	24 Aug 2018	29 Aug 2018	07 Sep 2018	03 Sep 2018	08 Sep 2018	04 Sep 2018
P108 0.1	SE183216.008	LB155628	24 Aug 2018	29 Aug 2018	07 Sep 2018	03 Sep 2018	08 Sep 2018	04 Sep 2018
P109 0.1	SE183216.009	LB155628	24 Aug 2018	29 Aug 2018	07 Sep 2018	03 Sep 2018	08 Sep 2018	04 Sep 2018
P110 0.1	SE183216.010	LB155628	24 Aug 2018	29 Aug 2018	07 Sep 2018	03 Sep 2018	08 Sep 2018	04 Sep 2018
UP2	SE183216.011	LB155628	24 Aug 2018	29 Aug 2018	07 Sep 2018	03 Sep 2018	08 Sep 2018	04 Sep 2018
C Pesticides in Soil							Method:	ME-(AU)-[ENV]A
ample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
P101 0.1	SE183216.001	LB155627	24 Aug 2018	29 Aug 2018	07 Sep 2018	03 Sep 2018	13 Oct 2018	04 Sep 2018
P102 0.1	SE183216.002	LB155627	24 Aug 2018	29 Aug 2018	07 Sep 2018	03 Sep 2018	13 Oct 2018	04 Sep 2018
P103 0.1	SE183216.003	LB155627	24 Aug 2018	29 Aug 2018	07 Sep 2018	03 Sep 2018	13 Oct 2018	04 Sep 2018
P104 0.1	SE183216.004	LB155627	24 Aug 2018	29 Aug 2018	07 Sep 2018	03 Sep 2018	13 Oct 2018	04 Sep 2018
P105 0.1	SE183216.005	LB155627	24 Aug 2018	29 Aug 2018	07 Sep 2018	03 Sep 2018	13 Oct 2018	04 Sep 2018
P106 0.1	SE183216.006	LB155627	24 Aug 2018	29 Aug 2018	07 Sep 2018	03 Sep 2018	13 Oct 2018	04 Sep 2018
P107 0.25	SE183216.007	LB155627	24 Aug 2018	29 Aug 2018	07 Sep 2018	03 Sep 2018	13 Oct 2018	04 Sep 2018
P108 0.1	SE183216.008	LB155627	24 Aug 2018	29 Aug 2018	07 Sep 2018	03 Sep 2018	13 Oct 2018	04 Sep 2018
P109 0.1	SE183216.009	LB155627	24 Aug 2018	29 Aug 2018	07 Sep 2018	03 Sep 2018	13 Oct 2018	04 Sep 2018
P110 0.1	SE183216.010	LB155627	24 Aug 2018	29 Aug 2018	07 Sep 2018	03 Sep 2018	13 Oct 2018	04 Sep 2018
UP2	SE183216.011	LB155627	24 Aug 2018	29 Aug 2018	07 Sep 2018	03 Sep 2018	13 Oct 2018	04 Sep 2018
	SE 103210.011	LD 133027	24 Aug 2010	28 Aug 2010	07 Sep 2010	03 360 2010		
Pesticides in Soil		00 B (ME-(AU)-[ENV]A
ample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
P101 0.1	SE183216.001	LB155627	24 Aug 2018	29 Aug 2018	07 Sep 2018	03 Sep 2018	13 Oct 2018	04 Sep 2018
P102 0.1	SE183216.002	LB155627	24 Aug 2018	29 Aug 2018	07 Sep 2018	03 Sep 2018	13 Oct 2018	04 Sep 2018
P103 0.1	SE183216.003	LB155627	24 Aug 2018	29 Aug 2018	07 Sep 2018	03 Sep 2018	13 Oct 2018	04 Sep 2018
P104 0.1	SE183216.004	LB155627	24 Aug 2018	29 Aug 2018	07 Sep 2018	03 Sep 2018	13 Oct 2018	04 Sep 2018
P105 0.1	SE183216.005	LB155627	24 Aug 2018	29 Aug 2018	07 Sep 2018	03 Sep 2018	13 Oct 2018	04 Sep 2018
P106 0.1	SE183216.006	LB155627	24 Aug 2018	29 Aug 2018	07 Sep 2018	03 Sep 2018	13 Oct 2018	05 Sep 2018
P107 0.25	SE183216.007	LB155627	24 Aug 2018	29 Aug 2018	07 Sep 2018	03 Sep 2018	13 Oct 2018	05 Sep 2018
P108 0.1	SE183216.008	LB155627	24 Aug 2018	29 Aug 2018	07 Sep 2018	03 Sep 2018	13 Oct 2018	05 Sep 2018
	SE192216 000	1 0166607	24 Aug 2019	20 Aug 2019	07 Son 2019	02 Son 2019	12 Oct 2019	05 0 0046

29 Aug 2018

29 Aug 2018

03 Sep 2018

03 Sep 2018

07 Sep 2018

07 Sep 2018

05 Sep 2018

05 Sep 2018

13 Oct 2018

13 Oct 2018

TP109 0.1

TP110 0.1

SE183216.009

SE183216.010

LB155627

LB155627

24 Aug 2018

24 Aug 2018

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

OP Pesticides in Soil (con	ntinued)						Method: I	ME-(AU)-[ENV]AN420
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
DUP2	SE183216.011	LB155627	24 Aug 2018	29 Aug 2018	07 Sep 2018	03 Sep 2018	13 Oct 2018	05 Sep 2018
PAH (Polynuclear Aroma	ttic Hydrocarbons) in Soil						Method: I	ME-(AU)-[ENV]AN420
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
TP101 0.1	SE183216.001	LB155627	24 Aug 2018	29 Aug 2018	07 Sep 2018	03 Sep 2018	13 Oct 2018	04 Sep 2018
TP102 0.1	SE183216.002	LB155627	24 Aug 2018	29 Aug 2018	07 Sep 2018	03 Sep 2018	13 Oct 2018	04 Sep 2018
TP103 0.1	SE183216.003	LB155627	24 Aug 2018	29 Aug 2018	07 Sep 2018	03 Sep 2018	13 Oct 2018	04 Sep 2018
TP104 0.1	SE183216.004	LB155627	24 Aug 2018	29 Aug 2018	07 Sep 2018	03 Sep 2018	13 Oct 2018	04 Sep 2018
TP105 0.1	SE183216.005	LB155627	24 Aug 2018	29 Aug 2018	07 Sep 2018	03 Sep 2018	13 Oct 2018	04 Sep 2018
TP106 0.1	SE183216.006	LB155627	24 Aug 2018	29 Aug 2018	07 Sep 2018	03 Sep 2018	13 Oct 2018	05 Sep 2018
TP107 0.25	SE183216.007	LB155627	24 Aug 2018	29 Aug 2018	07 Sep 2018	03 Sep 2018	13 Oct 2018	05 Sep 2018
TP108 0.1	SE183216.008	LB155627	24 Aug 2018	29 Aug 2018	07 Sep 2018	03 Sep 2018	13 Oct 2018	05 Sep 2018
TP109 0.1	SE183216.009	LB155627	24 Aug 2018	29 Aug 2018	07 Sep 2018	03 Sep 2018	13 Oct 2018	05 Sep 2018
TP110 0.1	SE183216.010	LB155627	24 Aug 2018	29 Aug 2018	07 Sep 2018	03 Sep 2018	13 Oct 2018	05 Sep 2018
DUP2	SE183216.011	LB155627	24 Aug 2018	29 Aug 2018	07 Sep 2018	03 Sep 2018	13 Oct 2018	05 Sep 2018
PCBs in Soil							Method: I	ME-(AU)-[ENV]AN420
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
TP101 0.1	SE183216.001	LB155627	24 Aug 2018	29 Aug 2018	07 Sep 2018	03 Sep 2018	13 Oct 2018	04 Sep 2018
TP102 0.1	SE183216.002	LB155627	24 Aug 2018	29 Aug 2018	07 Sep 2018	03 Sep 2018	13 Oct 2018	04 Sep 2018
TP103 0.1	SE183216.003	LB155627	24 Aug 2018	29 Aug 2018	07 Sep 2018	03 Sep 2018	13 Oct 2018	04 Sep 2018
TP104 0.1	SE183216.004	LB155627	24 Aug 2018	29 Aug 2018	07 Sep 2018	03 Sep 2018	13 Oct 2018	04 Sep 2018
TP105 0.1	SE183216.005	LB155627	24 Aug 2018	29 Aug 2018	07 Sep 2018	03 Sep 2018	13 Oct 2018	04 Sep 2018
TP106 0.1	SE183216.006	LB155627	24 Aug 2018	29 Aug 2018	07 Sep 2018	03 Sep 2018	13 Oct 2018	04 Sep 2018
TP107 0.25	SE183216.007	LB155627	24 Aug 2018	29 Aug 2018	07 Sep 2018	03 Sep 2018	13 Oct 2018	04 Sep 2018
TP108 0.1	SE183216.008	LB155627	24 Aug 2018	29 Aug 2018	07 Sep 2018	03 Sep 2018	13 Oct 2018	04 Sep 2018
TP109 0.1	SE183216.009	LB155627	24 Aug 2018	29 Aug 2018	07 Sep 2018	03 Sep 2018	13 Oct 2018	04 Sep 2018
TP110 0.1	SE183216.010	LB155627	24 Aug 2018	29 Aug 2018	07 Sep 2018	03 Sep 2018	13 Oct 2018	04 Sep 2018
DUP2	SE183216.011	LB155627	24 Aug 2018	29 Aug 2018	07 Sep 2018	03 Sep 2018	13 Oct 2018	04 Sep 2018
pH in soil (1:5)							Method: I	ME-(AU)-[ENV]AN101
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
TP103 0.1	SE183216.003	LB155661	24 Aug 2018	29 Aug 2018	31 Aug 2018	03 Sep 2018†	04 Sep 2018	03 Sep 2018
Total Recoverable Flome	ents in Soil/Waste Solids/Mat	terials by ICPOES					Method: ME-(AU)-[ENV]AN040/AN320
			Compled	Dessived		Eveneted		
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
TP101 0.1	SE183216.001	LB155629	24 Aug 2018	29 Aug 2018	20 Feb 2019	03 Sep 2018	20 Feb 2019	04 Sep 2018
TP102 0.1	SE183216.002	LB155629	24 Aug 2018	29 Aug 2018	20 Feb 2019	03 Sep 2018	20 Feb 2019	04 Sep 2018
TP103 0.1	SE183216.003	LB155629	24 Aug 2018	29 Aug 2018	20 Feb 2019	03 Sep 2018	20 Feb 2019	04 Sep 2018
TP104 0.1	SE183216.004	LB155629	24 Aug 2018	29 Aug 2018	20 Feb 2019	03 Sep 2018	20 Feb 2019	04 Sep 2018
TP105 0.1	SE183216.005	LB155629	24 Aug 2018	29 Aug 2018	20 Feb 2019	03 Sep 2018	20 Feb 2019	04 Sep 2018
TP106 0.1	SE183216.006	LB155629	24 Aug 2018	29 Aug 2018	20 Feb 2019	03 Sep 2018	20 Feb 2019	04 Sep 2018
TP107 0.25	SE183216.007	LB155629	24 Aug 2018	29 Aug 2018	20 Feb 2019	03 Sep 2018	20 Feb 2019	04 Sep 2018
TP108 0.1	SE183216.008	LB155629	24 Aug 2018	29 Aug 2018	20 Feb 2019	03 Sep 2018	20 Feb 2019	04 Sep 2018
TP109 0.1	SE183216.009	LB155629	24 Aug 2018	29 Aug 2018	20 Feb 2019	03 Sep 2018	20 Feb 2019	04 Sep 2018
TP110 0.1	SE183216.010	LB155629	24 Aug 2018	29 Aug 2018	20 Feb 2019	03 Sep 2018	20 Feb 2019	04 Sep 2018
DUP2	SE183216.011	LB155629	24 Aug 2018	29 Aug 2018	20 Feb 2019	03 Sep 2018	20 Feb 2019	04 Sep 2018
TRH (Total Recoverable	Hydrocarbons) in Soil						Method: I	ME-(AU)-[ENV]AN403
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
TP101 0.1	SE183216.001	LB155627	24 Aug 2018	29 Aug 2018	07 Sep 2018	03 Sep 2018	13 Oct 2018	04 Sep 2018
TP102 0.1	SE183216.002	LB155627	24 Aug 2018	29 Aug 2018	07 Sep 2018	03 Sep 2018	13 Oct 2018	04 Sep 2018
TP103 0.1	SE183216.003	LB155627	24 Aug 2018	29 Aug 2018	07 Sep 2018	03 Sep 2018	13 Oct 2018	04 Sep 2018
TP104 0.1	SE183216.004	LB155627	24 Aug 2018	29 Aug 2018	07 Sep 2018	03 Sep 2018	13 Oct 2018	04 Sep 2018
TP105 0.1	SE183216.005	LB155627	24 Aug 2018	29 Aug 2018	07 Sep 2018	03 Sep 2018	13 Oct 2018	04 Sep 2018
TP106 0.1	SE183216.006	LB155627	24 Aug 2018	29 Aug 2018	07 Sep 2018	03 Sep 2018	13 Oct 2018	04 Sep 2018
TP107 0.25	SE183216.007	LB155627	24 Aug 2018	29 Aug 2018	07 Sep 2018	03 Sep 2018	13 Oct 2018	04 Sep 2018
	3E 1632 10.007	LB155027	24 Aug 2010					
TP108 0.1	SE183216.008	LB155627	24 Aug 2018	29 Aug 2018	07 Sep 2018	03 Sep 2018	13 Oct 2018	04 Sep 2018
TP108 0.1 TP109 0.1			•		•	03 Sep 2018 03 Sep 2018		04 Sep 2018 04 Sep 2018
	SE183216.008	LB155627	24 Aug 2018	29 Aug 2018	07 Sep 2018		13 Oct 2018	

29 Aug 2018

07 Sep 2018

03 Sep 2018

13 Oct 2018

SE183216.011

LB155627

24 Aug 2018

DUP2

04 Sep 2018

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

Comula Nama	Comple No.	00 84	Compled	Received	Extraction Due	Evtracted	Analusia Dua	Analysed
Sample Name	Sample No.	QC Ref	Sampled		Extraction Due	Extracted	Analysis Due	Analysed
RINS 24.08.2018	SE183216.012	LB155528	24 Aug 2018	29 Aug 2018	31 Aug 2018	31 Aug 2018	10 Oct 2018	03 Sep 2018
VOC's in Soil							Method:	ME-(AU)-[ENV]AN
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
TP101 0.1	SE183216.001	LB155626	24 Aug 2018	29 Aug 2018	07 Sep 2018	03 Sep 2018	13 Oct 2018	05 Sep 2018
TP102 0.1	SE183216.002	LB155626	24 Aug 2018	29 Aug 2018	07 Sep 2018	03 Sep 2018	13 Oct 2018	05 Sep 2018
TP103 0.1	SE183216.003	LB155626	24 Aug 2018	29 Aug 2018	07 Sep 2018	03 Sep 2018	13 Oct 2018	05 Sep 2018
TP104 0.1	SE183216.004	LB155626	24 Aug 2018	29 Aug 2018	07 Sep 2018	03 Sep 2018	13 Oct 2018	05 Sep 2018
TP105 0.1	SE183216.005	LB155626	24 Aug 2018	29 Aug 2018	07 Sep 2018	03 Sep 2018	13 Oct 2018	05 Sep 2018
TP106 0.1	SE183216.006	LB155626	24 Aug 2018	29 Aug 2018	07 Sep 2018	03 Sep 2018	13 Oct 2018	05 Sep 2018
TP107 0.25	SE183216.007	LB155626	24 Aug 2018	29 Aug 2018	07 Sep 2018	03 Sep 2018	13 Oct 2018	05 Sep 2018
TP108 0.1	SE183216.008	LB155626	24 Aug 2018	29 Aug 2018	07 Sep 2018	03 Sep 2018	13 Oct 2018	05 Sep 2018
TP109 0.1	SE183216.009	LB155626	24 Aug 2018	29 Aug 2018	07 Sep 2018	03 Sep 2018	13 Oct 2018	05 Sep 2018
TP110 0.1	SE183216.010	LB155626	24 Aug 2018	29 Aug 2018	07 Sep 2018	03 Sep 2018	13 Oct 2018	05 Sep 2018
DUP2	SE183216.011	LB155626	24 Aug 2018	29 Aug 2018	07 Sep 2018	03 Sep 2018	13 Oct 2018	05 Sep 2018
/OCs in Water							Method:	ME-(AU)-[ENV]AN
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
RINS 24.08.2018	SE183216.012	LB155745	24 Aug 2018	29 Aug 2018	31 Aug 2018	29 Aug 2018	08 Oct 2018	05 Sep 2018

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
TP101 0.1	SE183216.001	LB155626	24 Aug 2018	29 Aug 2018	07 Sep 2018	03 Sep 2018	13 Oct 2018	05 Sep 2018
TP102 0.1	SE183216.002	LB155626	24 Aug 2018	29 Aug 2018	07 Sep 2018	03 Sep 2018	13 Oct 2018	05 Sep 2018
TP103 0.1	SE183216.003	LB155626	24 Aug 2018	29 Aug 2018	07 Sep 2018	03 Sep 2018	13 Oct 2018	05 Sep 2018
TP104 0.1	SE183216.004	LB155626	24 Aug 2018	29 Aug 2018	07 Sep 2018	03 Sep 2018	13 Oct 2018	05 Sep 2018
TP105 0.1	SE183216.005	LB155626	24 Aug 2018	29 Aug 2018	07 Sep 2018	03 Sep 2018	13 Oct 2018	05 Sep 2018
TP106 0.1	SE183216.006	LB155626	24 Aug 2018	29 Aug 2018	07 Sep 2018	03 Sep 2018	13 Oct 2018	05 Sep 2018
TP107 0.25	SE183216.007	LB155626	24 Aug 2018	29 Aug 2018	07 Sep 2018	03 Sep 2018	13 Oct 2018	05 Sep 2018
TP108 0.1	SE183216.008	LB155626	24 Aug 2018	29 Aug 2018	07 Sep 2018	03 Sep 2018	13 Oct 2018	05 Sep 2018
TP109 0.1	SE183216.009	LB155626	24 Aug 2018	29 Aug 2018	07 Sep 2018	03 Sep 2018	13 Oct 2018	05 Sep 2018
TP110 0.1	SE183216.010	LB155626	24 Aug 2018	29 Aug 2018	07 Sep 2018	03 Sep 2018	13 Oct 2018	05 Sep 2018
DUP2	SE183216.011	LB155626	24 Aug 2018	29 Aug 2018	07 Sep 2018	03 Sep 2018	13 Oct 2018	05 Sep 2018
Volatile Petroleum Hydro	carbons in Water						Method: I	ME-(AU)-[ENV]AN433
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
RINS 24.08.2018	SE183216.012	LB155745	24 Aug 2018	29 Aug 2018	31 Aug 2018	29 Aug 2018	08 Oct 2018	05 Sep 2018

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

C Pesticides in Soil					-(AU)-[ENV]/
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery
Tetrachloro-m-xylene (TCMX) (Surrogate)	TP101 0.1	SE183216.001	%	60 - 130%	105
	TP102 0.1	SE183216.002	%	60 - 130%	117
	TP103 0.1	SE183216.003	%	60 - 130%	121
	TP104 0.1	SE183216.004	%	60 - 130%	119
	TP105 0.1	SE183216.005	%	60 - 130%	123
	TP106 0.1	SE183216.006	%	60 - 130%	117
	TP107 0.25	SE183216.007	%	60 - 130%	120
	TP108 0.1	SE183216.008	%	60 - 130%	122
	TP109 0.1	SE183216.009	%	60 - 130%	113
	TP110 0.1	SE183216.010	%	60 - 130%	121
	DUP2	SE183216.011	%	60 - 130%	123
P Pesticides in Soil				Method: ME-	(AU)-[ENV]
arameter	Sample Name	Sample Number	Units	Criteria	Recover
2-fluorobiphenyl (Surrogate)	TP101 0.1	SE183216.001	%	60 - 130%	88
	TP102 0.1	SE183216.002	%	60 - 130%	86
	TP103 0.1	SE183216.003	%	60 - 130%	82
	TP104 0.1	SE183216.004	%	60 - 130%	86
	TP105 0.1	SE183216.005	%	60 - 130%	90
		SE183216.005	%		
	TP106 0.1			60 - 130%	86
	TP107 0.25	SE183216.007	%	60 - 130%	88
	TP108 0.1	SE183216.008	%	60 - 130%	88
	TP109 0.1	SE183216.009	%	60 - 130%	90
	TP110 0.1	SE183216.010	%	60 - 130%	86
	DUP2	SE183216.011	%	60 - 130%	92
I4-p-terphenyl (Surrogate)	TP101 0.1	SE183216.001	%	60 - 130%	102
	TP102 0.1	SE183216.002	%	60 - 130%	90
	TP103 0.1	SE183216.003	%	60 - 130%	98
	TP104 0.1	SE183216.004	%	60 - 130%	94
	TP105 0.1	SE183216.005	%	60 - 130%	96
	TP106 0.1	SE183216.006	%	60 - 130%	100
	TP107 0.25	SE183216.007	%	60 - 130%	98
	TP108 0.1	SE183216.008	%	60 - 130%	96
	TP109 0.1	SE183216.009	%	60 - 130%	102
	TP110 0.1	SE183216.010	%	60 - 130%	100
	DUP2	SE183216.011	%	60 - 130%	96
H (Polynuclear Aromatic Hydrocarbons) in Soil				Method: ME-	(AU)-IENV
irameter	Sample Name	Sample Number	Units	Criteria	Recove
fluorobiphenyl (Surrogate)	TP101 0.1	SE183216.001	%	70 - 130%	88
ndorobipitetiyi (odrogato)			%	70 - 130%	86
	TP102 0.1	SE183216.002			
	TP103 0.1	SE183216.003	%	70 - 130%	82
	TP104 0.1	SE183216.004	%	70 - 130%	86
	TP105 0.1	SE183216.005	%	70 - 130%	90
	TP106 0.1	SE183216.006	%	70 - 130%	86
	TP107 0.25	SE183216.007	%	70 - 130%	88
	TP108 0.1	SE183216.008	%	70 - 130%	88
	TP109 0.1	SE183216.009	%	70 - 130%	90
	TP110 0.1	SE183216.010	%	70 - 130%	86
	DUP2	SE183216.011	%	70 - 130%	92
4-p-terphenyl (Surrogate)	TP101 0.1	SE183216.001	%	70 - 130%	102
	TP102 0.1	SE183216.002	%	70 - 130%	90
	TP103 0.1	SE183216.003	%	70 - 130%	98
	TP104 0.1	SE183216.004	%	70 - 130%	94
	TP105 0.1	SE183216.005	%	70 - 130%	96
	TP106 0.1	SE183216.006	%	70 - 130%	100
	TP107 0.25	SE183216.007	%	70 - 130%	98
	TP108 0.1	SE183216.008	%	70 - 130%	96
	TP109 0.1	SE183216.009	%	70 - 130%	102
	TP110 0.1	SE183216.010	%	70 - 130%	100
	DUP2	SE183216.011	%	70 - 130%	96

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

AH (Polynuclear Aromatic Hydrocarbons) in Soil (continued)				Method: ME	-(AU)-[ENV]A
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery
d5-nitrobenzene (Surrogate)	TP102 0.1	SE183216.002	%	70 - 130%	82
	TP103 0.1	SE183216.003	%	70 - 130%	92
	TP104 0.1	SE183216.004	%	70 - 130%	84
	TP105 0.1	SE183216.005	%	70 - 130%	86
	TP106 0.1	SE183216.006	%	70 - 130%	80
	TP107 0.25	SE183216.007	%	70 - 130%	84
	TP108 0.1	SE183216.008	%	70 - 130%	84
	TP109 0.1	SE183216.009	%	70 - 130%	82
	TP110 0.1	SE183216.010	%	70 - 130%	82
	DUP2	SE183216.011	%	70 - 130%	82
CBs in Soil				Method: ME	-(AU)-[ENV]A
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery
Tetrachloro-m-xylene (TCMX) (Surrogate)	TP101 0.1	SE183216.001	%	60 - 130%	105
	TP102 0.1	SE183216.002	%	60 - 130%	117
	TP103 0.1	SE183216.003	%	60 - 130%	121
	TP104 0.1	SE183216.004	%	60 - 130%	119
	TP105 0.1	SE183216.005	%	60 - 130%	123
	TP106 0.1	SE183216.005	%	60 - 130%	123
	TP107 0.25	SE183216.007	%	60 - 130%	120
	TP108 0.1	SE183216.008	%	60 - 130%	122
	TP109 0.1	SE183216.009	%	60 - 130%	113
	TP110 0.1	SE183216.010	%	60 - 130%	121
	DUP2	SE183216.011	%	60 - 130%	123
OC's in Soll				Method: ME	-(AU)-[ENV]/
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery
Bromofluorobenzene (Surrogate)	TP101 0.1	SE183216.001	%	60 - 130%	80
Sionoliuolobelizelle (Sunogate)			%	60 - 130%	
	TP102 0.1	SE183216.002			77
	TP103 0.1	SE183216.003	%	60 - 130%	75
	TP104 0.1	SE183216.004	%	60 - 130%	74
	TP105 0.1	SE183216.005	%	60 - 130%	78
	TP106 0.1	SE183216.006	%	60 - 130%	75
	TP107 0.25	SE183216.007	%	60 - 130%	75
	TP108 0.1	SE183216.008	%	60 - 130%	74
	TP109 0.1	SE183216.009	%	60 - 130%	82
	TP110 0.1	SE183216.010	%	60 - 130%	75
	DUP2	SE183216.011	%	60 - 130%	79
d4-1,2-dichloroethane (Surrogate)	TP101 0.1	SE183216.001	%	60 - 130%	98
	TP102 0.1	SE183216.002	%	60 - 130%	99
	TP103 0.1	SE183216.003	%	60 - 130%	79
	TP104 0.1	SE183216.004	%	60 - 130%	95
			%		
	TP105 0.1	SE183216.005		60 - 130%	86
	TP106 0.1	SE183216.006	%	60 - 130%	93
	TP107 0.25	SE183216.007	%	60 - 130%	92
	TP108 0.1	SE183216.008	%	60 - 130%	93
	TP109 0.1	SE183216.009	%	60 - 130%	89
	TP110 0.1	SE183216.010	%	60 - 130%	82
	DUP2	SE183216.011	%	60 - 130%	85
d8-toluene (Surrogate)	TP101 0.1	SE183216.001	%	60 - 130%	80
	TP102 0.1	SE183216.002	%	60 - 130%	90
	TP103 0.1	SE183216.003	%	60 - 130%	70
	TP104 0.1	SE183216.004	%	60 - 130%	79
	TP105 0.1	SE183216.005	%	60 - 130%	76
		SE183216.006	%	60 - 130%	84
	TP106.0.1	02.00210.000	%	60 - 130%	82
	TP106 0.1	SE183216 007		00 - 130%	02
	TP107 0.25	SE183216.007			70
	TP107 0.25 TP108 0.1	SE183216.008	%	60 - 130%	76
	TP107 0.25 TP108 0.1 TP109 0.1	SE183216.008 SE183216.009	%	60 - 130% 60 - 130%	80
	TP107 0.25 TP108 0.1 TP109 0.1 TP110 0.1	SE183216.008 SE183216.009 SE183216.010	% % %	60 - 130% 60 - 130% 60 - 130%	80 73
	TP107 0.25 TP108 0.1 TP109 0.1	SE183216.008 SE183216.009	%	60 - 130% 60 - 130%	80
Dibromofluoromethane (Surrogate)	TP107 0.25 TP108 0.1 TP109 0.1 TP110 0.1	SE183216.008 SE183216.009 SE183216.010	% % %	60 - 130% 60 - 130% 60 - 130%	80 73

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

VOC's in Soil (continued)				Method: ME	-(AU)-[ENV]AN
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Dibromofluoromethane (Surrogate)	TP103 0.1	SE183216.003	%	60 - 130%	74
	TP104 0.1	SE183216.004	%	60 - 130%	81
	TP105 0.1	SE183216.005	%	60 - 130%	77
	TP106 0.1	SE183216.006	%	60 - 130%	86
	TP107 0.25	SE183216.007	%	60 - 130%	84
	TP108 0.1	SE183216.008	%	60 - 130%	79
	TP109 0.1	SE183216.009	%	60 - 130%	84
	TP110 0.1	SE183216.010	%	60 - 130%	77
	DUP2	SE183216.011	%	60 - 130%	79
/OCs in Water				Method: ME	-(AU)-[ENV]AN
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Bromofluorobenzene (Surrogate)	RINS 24.08.2018	SE183216.012	%	40 - 130%	85
d4-1,2-dichloroethane (Surrogate)	RINS 24.08.2018	SE183216.012	%	40 - 130%	114
d8-toluene (Surrogate)	RINS 24.08.2018	SE183216.012	%	40 - 130%	101
Dibromofluoromethane (Surrogate)	RINS 24.08.2018	SE183216.012	%	40 - 130%	101
/olatile Petroleum Hydrocarbons in Soil					-(AU)-[ENV]AN
· · · · · · · · · · · · · · · · · · ·					
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Bromofluorobenzene (Surrogate)	TP101 0.1	SE183216.001	%	60 - 130%	80
	TP102 0.1	SE183216.002	%	60 - 130%	77
	TP103 0.1	SE183216.003	%	60 - 130%	75
	TP104 0.1	SE183216.004	%	60 - 130%	74
	TP105 0.1	SE183216.005	%	60 - 130%	78
	TP106 0.1	SE183216.006	%	60 - 130%	75
	TP107 0.25	SE183216.007	%	60 - 130%	75
	TP108 0.1	SE183216.008	%	60 - 130%	74
	TP109 0.1	SE183216.009	%	60 - 130%	82
	TP110 0.1	SE183216.010	%	60 - 130%	75
	DUP2	SE183216.011	%	60 - 130%	79
d4-1,2-dichloroethane (Surrogate)	TP101 0.1	SE183216.001	%	60 - 130%	98
,	TP102 0.1	SE183216.002	%	60 - 130%	99
	TP103 0.1	SE183216.003	%	60 - 130%	79
	TP104 0.1	SE183216.004	%	60 - 130%	95
	TP105 0.1	SE183216.005	%	60 - 130%	86
	TP106 0.1	SE183216.006	%	60 - 130%	93
	TP107 0.25	SE183216.007	%	60 - 130%	92
			%		93
	TP108 0.1	SE183216.008		60 - 130%	
	TP109 0.1	SE183216.009	%	60 - 130%	89
	TP110 0.1	SE183216.010	%	60 - 130%	82
	DUP2	SE183216.011	%	60 - 130%	85
d8-toluene (Surrogate)	TP101 0.1	SE183216.001	%	60 - 130%	80
	TP102 0.1	SE183216.002	%	60 - 130%	90
	TP103 0.1	SE183216.003	%	60 - 130%	70
	TP104 0.1	SE183216.004	%	60 - 130%	79
	TP105 0.1	SE183216.005	%	60 - 130%	76
	TP106 0.1	SE183216.006	%	60 - 130%	84
	TP107 0.25	SE183216.007	%	60 - 130%	82
	TP108 0.1	SE183216.008	%	60 - 130%	76
	TP109 0.1	SE183216.009	%	60 - 130%	80
	TP110 0.1	SE183216.010	%	60 - 130%	73
	DUP2	SE183216.011	%	60 - 130%	76
Dibromofluoromethane (Surrogate)	TP101 0.1	SE183216.001	%	60 - 130%	85
	TP102 0.1	SE183216.002	%	60 - 130%	93
	TP103 0.1	SE183216.003	%	60 - 130%	74
	TP104 0.1	SE183216.004	%	60 - 130%	81
	TP105 0.1	SE183216.004	%	60 - 130%	77
	TP105.0.1 TP106.0.1		%	60 - 130%	
		SE183216.006			86
	TP107 0.25	SE183216.007	%	60 - 130%	84
	TP108 0.1	SE183216.008	%	60 - 130%	79
	TP109 0.1	SE183216.009	%	60 - 130%	84
	TP110 0.1	SE183216.010	%	60 - 130%	77

8/10/2018

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Volatile Petroleum Hydrocarbons in Soli (continued)	Method: M	E-(AU)-[ENV]AN433			
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Dibromofluoromethane (Surrogate)	DUP2	SE183216.011	%	60 - 130%	79
Volatile Petroleum Hydrocarbons in Water Method: ME-(AU					
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Bromofluorobenzene (Surrogate)	RINS 24.08.2018	SE183216.012	%	40 - 130%	85
d4-1,2-dichloroethane (Surrogate)	RINS 24.08.2018	SE183216.012	%	60 - 130%	114
d8-toluene (Surrogate)	RINS 24.08.2018	SE183216.012	%	40 - 130%	101
Dibromofluoromethane (Surrogate)	RINS 24.08.2018	SE183216.012	%	40 - 130%	101

METHOD BLANKS

SE183216 R1

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Exchangeable Cations and Cation Exchange Capacity (CEC/ESP/SAR)

•				
Sample Number	Parameter	Units	LOR	Result
LB155649.001	Exchangeable Sodium, Na	mg/kg	2	0
	Exchangeable Potassium, K	mg/kg	2	0
	Exchangeable Calcium, Ca	mg/kg	2	0
	Exchangeable Magnesium, Mg	mg/kg	2	0
Mercury in Soil			Meth	od: ME-(AU)-[ENV]AN312
Sample Number	Parameter	Units	LOR	Result
LB155630.001	Mercury	mg/kg	0.05	<0.05

OC Pesticides in Soil

OC Pesticides in Soil			М	lethod: ME-(AU)-[ENV]AN42
Sample Number	Parameter	Units	LOR	Result
LB155627.001	Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1
	Alpha BHC	mg/kg	0.1	<0.1
	Lindane	mg/kg	0.1	<0.1
	Heptachlor	mg/kg	0.1	<0.1
	Aldrin	mg/kg	0.1	<0.1
	Beta BHC	mg/kg	0.1	<0.1
	Delta BHC	mg/kg	0.1	<0.1
	Heptachlor epoxide	mg/kg	0.1	<0.1
	Alpha Endosulfan	mg/kg	0.2	<0.2
	Gamma Chlordane	mg/kg	0.1	<0.1
	Alpha Chlordane	mg/kg	0.1	<0.1
	p,p'-DDE	mg/kg	0.1	<0.1
	Dieldrin	mg/kg	0.2	<0.2
	Endrin	mg/kg	0.2	<0.2
	Beta Endosulfan	mg/kg	0.2	<0.2
	p,p'-DDD	mg/kg	0.1	<0.1
	p,p'-DDT	mg/kg	0.1	<0.1
	Endosulfan sulphate	mg/kg	0.1	<0.1
	Endrin Aldehyde	mg/kg	0.1	<0.1
	Methoxychlor	mg/kg	0.1	<0.1
	Endrin Ketone	mg/kg	0.1	<0.1
	Isodrin	mg/kg	0.1	<0.1
	Mirex	mg/kg	0.1	<0.1
Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	%	-	95
OP Pesticides in Soil			M	lethod: ME-(AU)-[ENV]AN42

		Mour		
Sample Number	Parameter	Units	LOR	Result
.B155627.001	Dichlorvos	mg/kg	0.5	<0.5
	Dimethoate	mg/kg	0.5	<0.5
	Diazinon (Dimpylate)	mg/kg	0.5	<0.5
	Fenitrothion	mg/kg	0.2	<0.2
	Malathion	mg/kg	0.2	<0.2
	Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2
	Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2
	Bromophos Ethyl	mg/kg	0.2	<0.2
	Methidathion	mg/kg	0.5	<0.5
	Ethion	mg/kg	0.2	<0.2
	Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2
Surrogates	2-fluorobiphenyl (Surrogate)	%	-	94
	d14-p-terphenyl (Surrogate)	%	-	98

PAH (Polynuclear Aromatic Hydrocarbons) in Soil

Sample Number	Parameter	Units	LOR	Result
LB155627.001	Naphthalene	mg/kg	0.1	<0.1
	2-methylnaphthalene	mg/kg	0.1	<0.1
	1-methylnaphthalene	mg/kg	0.1	<0.1
	Acenaphthylene	mg/kg	0.1	<0.1
	Acenaphthene	mg/kg	0.1	<0.1
	Fluorene	mg/kg	0.1	<0.1
	Phenanthrene	mg/kg	0.1	<0.1

Method: ME-(AU)-[ENV]AN122

METHOD BLANKS

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

	matic Hydrocarbons) in Soil (co				d: ME-(AU)-[ENV]AN
Sample Number		Parameter	Units	LOR	Result
LB155627.001		Anthracene	mg/kg	0.1	<0.1
		Fluoranthene	mg/kg	0.1	<0.1
		Pyrene	mg/kg	0.1	<0.1
		Benzo(a)anthracene	mg/kg	0.1	<0.1
		Chrysene	mg/kg	0.1	<0.1
		Benzo(a)pyrene	mg/kg	0.1	<0.1
		Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1
				0.1	<0.1
		Dibenzo(ah)anthracene	mg/kg	· · · · · ·	
		Benzo(ghi)perylene	mg/kg	0.1	<0.1
		Total PAH (18)	mg/kg	0.8	<0.8
	Surrogates	d5-nitrobenzene (Surrogate)	%	-	84
		2-fluorobiphenyl (Surrogate)	%		94
		d14-p-terphenyl (Surrogate)	%	-	98
PCBs in Soil				Metho	d: ME-(AU)-[ENV]AN
Sample Number		Parameter	Units	LOR	Result
LB155627.001		Arochlor 1016	mg/kg	0.2	<0.2
		Arochlor 1221	mg/kg	0.2	<0.2
		Arochlor 1232	mg/kg	0.2	<0.2
		Arochlor 1242	mg/kg	0.2	<0.2
		Arochlor 1248	mg/kg	0.2	<0.2
		Arochlor 1254	mg/kg	0.2	<0.2
		Arochlor 1260	mg/kg	0.2	<0.2
		Arochlor 1262	mg/kg	0.2	<0.2
		Arochlor 1268	mg/kg	0.2	<0.2
		Total PCBs (Arochlors)	mg/kg	1	<1
	Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	%	-	95
			/0		
Total Recoverable Elei	ments in Soil/Waste Solids/Mat	erials by ICPOES		Method: ME-((AU)-[ENV]AN040/AN
Sample Number		Parameter	Units	LOR	Result
LB155629.001		Arsenic, As	mg/kg	1	<1
		Cadmium, Cd	mg/kg	0.3	<0.3
		Chromium, Cr	mg/kg	0.3	<0.3
		Copper, Cu	mg/kg	0.5	<0.5
		Nickel, Ni		0.5	<0.5
			mg/kg		
		Lead, Pb	mg/kg	2	<1
		Zinc, Zn	mg/kg		<2.0
RH (Total Recoverab	le Hydrocarbons) in Soil			Metho	d: ME-(AU)-[ENV]AN
Sample Number		Parameter	Units	LOR	Result
LB155627.001		TRH C10-C14	mg/kg	20	<20
		TRH C15-C28	mg/kg	45	<45
		TRH C29-C36		45	<45
			mg/kg	· · · · · ·	
		TRH C37-C40	mg/kg	100	<100
		TRH C10-C36 Total	mg/kg	110	<110
RH (Total Recoverab	le Hydrocarbons) in Water			Metho	d: ME-(AU)-[ENV]AN
Sample Number		Parameter	Units	LOR	Result
LB155528.001		TRH C10-C14	μg/L	50	<50
		TRH C15-C28	μg/L	200	<200
		TRH C13-C28		200	<200
			μg/L		
		TRH C37-C40	µg/L	200	<200
				Metho	d: ME-(AU)-[ENV]AN
/OC's in Soil		Parameter	Units	LOR	Result
			mg/kg	0.1	<0.1
Sample Number	Monocyclic Aromatic	Benzene			
Sample Number			ma/ka	0.1	<0.1
/OC's in Soil Sample Number LB155626.001	Monocyclic Aromatic Hydrocarbons	Toluene	mg/kg	0.1	<0.1
Sample Number		Toluene Ethylbenzene	mg/kg	0.1	<0.1
Sample Number		Toluene Ethylbenzene m/p-xylene	mg/kg mg/kg	0.1 0.2	<0.1 <0.2
Sample Number	Hydrocarbons	Toluene Ethylbenzene m/p-xylene o-xylene	mg/kg mg/kg mg/kg	0.1 0.2 0.1	<0.1 <0.2 <0.1
Sample Number	Hydrocarbons Polycyclic VOCs	Toluene Ethylbenzene m/p-xylene o-xylene Naphthalene	mg/kg mg/kg mg/kg mg/kg	0.1 0.2 0.1 0.1	<0.1 <0.2 <0.1 <0.1
Sample Number	Hydrocarbons	Toluene Ethylbenzene m/p-xylene o-xylene	mg/kg mg/kg mg/kg	0.1 0.2 0.1	<0.1 <0.2 <0.1

METHOD BLANKS

SE183216 R1

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

VOC's in Soil (continued)

VOC's in Soil (continu	(beu			Meth	od: ME-(AU)-[ENV]AN43
Sample Number		Parameter	Units	LOR	Result
LB155626.001	Surrogates	d8-toluene (Surrogate)	%	-	106
		Bromofluorobenzene (Surrogate)	%	-	74
	Totals	Total BTEX	mg/kg	0.6	<0.6
VOCs in Water				Meth	od: ME-(AU)-[ENV]AN43
Sample Number		Parameter	Units	LOR	Result
LB155745.001	Monocyclic Aromatic	Benzene	µg/L	0.5	<0.5
	Hydrocarbons	Toluene	µg/L	0.5	<0.5
		Ethylbenzene	µg/L	0.5	<0.5
		m/p-xylene	µg/L	1	<1
		o-xylene	µg/L	0.5	<0.5
	Polycyclic VOCs	Naphthalene	µg/L	0.5	<0.5
	Surrogates	Dibromofluoromethane (Surrogate)	%	-	87
		d4-1,2-dichloroethane (Surrogate)	%	-	96
		d8-toluene (Surrogate)	%	-	98
		Bromofluorobenzene (Surrogate)	%	-	90
Volatile Petroleum Hy	/drocarbons in Soil			Meth	od: ME-(AU)-[ENV]AN43
Sample Number		Parameter	Units	LOR	Result
LB155626.001		TRH C6-C9	mg/kg	20	<20
	Surrogates	Dibromofluoromethane (Surrogate)	%	-	74
		d4-1,2-dichloroethane (Surrogate)	%	-	72
		d8-toluene (Surrogate)	%	-	106
Volatile Petroleum Hy	/drocarbons in Water			Meth	od: ME-(AU)-[ENV]AN43
Sample Number		Parameter	Units	LOR	Result
LB155745.001		TRH C6-C9	µg/L	40	<40
	Surrogates	Dibromofluoromethane (Surrogate)	%	-	87
		d4-1,2-dichloroethane (Surrogate)	%	-	96
		d8-toluene (Surrogate)	%	-	98
		Bromofluorobenzene (Surrogate)	%	-	90

Method: ME-(AU)-IENVIAN002

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Mercury in Soil						Meth	od: ME-(AU)-	ENVJAN312
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE183216.003	LB155630.014	Mercury	mg/kg	0.05	<0.05	<0.05	200	0
SE183216.011	LB155630.023	Mercury	mg/kg	0.05	<0.05	<0.05	200	0

Moisture Content

······································								
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE183216.003	LB155628.011	% Moisture	%w/w	0.5	6.5	6.2	46	5
SE183216.011	LB155628.020	% Moisture	%w/w	0.5	8.0	8.6	42	7

OC Pesticides in Soil

	Soil							od: ME-(AU)-	
Priginal	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
E183216.001	LB155627.028		Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	<0.1	200	0
			Alpha BHC	mg/kg	0.1	<0.1	<0.1	200	0
			Lindane	mg/kg	0.1	<0.1	<0.1	200	0
			Heptachlor	mg/kg	0.1	<0.1	<0.1	200	0
			Aldrin	mg/kg	0.1	<0.1	<0.1	200	0
			Beta BHC	mg/kg	0.1	<0.1	<0.1	200	0
			Delta BHC	mg/kg	0.1	<0.1	<0.1	200	0
			Heptachlor epoxide	mg/kg	0.1	<0.1	<0.1	200	0
			o,p'-DDE	mg/kg	0.1	<0.1	<0.1	200	0
			Alpha Endosulfan	mg/kg	0.2	<0.2	<0.2	200	0
			Gamma Chlordane	mg/kg	0.1	<0.1	<0.1	200	0
			Alpha Chlordane	mg/kg	0.1	<0.1	<0.1	200	0
			trans-Nonachlor	mg/kg	0.1	<0.1	<0.1	200	0
			p,p'-DDE	mg/kg	0.1	<0.1	<0.1	200	0
			Dieldrin	mg/kg	0.2	<0.2	<0.2	200	0
			Endrin	mg/kg	0.2	<0.2	<0.2	200	0
			o,p'-DDD	mg/kg	0.1	<0.1	<0.1	200	0
			o,p'-DDT	mg/kg	0.1	<0.1	<0.1	200	0
			Beta Endosulfan	mg/kg	0.2	<0.2	<0.2	200	0
			p,p'-DDD	mg/kg	0.1	<0.1	<0.1	200	0
			p,p'-DDT	mg/kg	0.1	<0.1	<0.1	200	0
			Endosulfan sulphate	mg/kg	0.1	<0.1	<0.1	200	0
			Endrin Aldehyde	mg/kg	0.1	<0.1	<0.1	200	0
			Methoxychlor	mg/kg	0.1	<0.1	<0.1	200	0
			Endrin Ketone	mg/kg	0.1	<0.1	<0.1	200	0
			Isodrin	mg/kg	0.1	<0.1	<0.1	200	0
			Mirex	mg/kg	0.1	<0.1	<0.1	200	0
			Total CLP OC Pesticides	mg/kg	1	<1	<1	200	0
		Surragataa				0.16	0.19	30	17
183216.011	LB155627.023	Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate) Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	<0.19	200	0
=103210.011	LB155627.023			mg/kg					
			Alpha BHC	mg/kg	0.1	<0.1	<0.1	200	0
			Lindane	mg/kg	0.1	<0.1	<0.1	200	0
			Heptachlor	mg/kg	0.1	<0.1	<0.1	200	0
			Aldrin	mg/kg	0.1	<0.1	<0.1	200	0
			Beta BHC	mg/kg	0.1	<0.1	<0.1	200	0
			Delta BHC	mg/kg	0.1	<0.1	<0.1	200	0
			Heptachlor epoxide	mg/kg	0.1	<0.1	<0.1	200	0
			o,p'-DDE	mg/kg	0.1	<0.1	<0.1	200	0
			Alpha Endosulfan	mg/kg	0.2	<0.2	<0.2	200	0
			Gamma Chlordane	mg/kg	0.1	<0.1	<0.1	200	0
			Alpha Chlordane	mg/kg	0.1	<0.1	<0.1	200	0
			trans-Nonachlor	mg/kg	0.1	<0.1	<0.1	200	0
			p,p'-DDE	mg/kg	0.1	<0.1	<0.1	200	0
			Dieldrin	mg/kg	0.2	<0.2	<0.2	200	0
			Endrin	mg/kg	0.2	<0.2	<0.2	200	0
			o,p'-DDD	mg/kg	0.1	<0.1	<0.1	200	0
			o,p'-DDT	mg/kg	0.1	<0.1	<0.1	200	0
			Beta Endosulfan	mg/kg	0.2	<0.2	<0.2	200	0
			p,p'-DDD	mg/kg	0.1	<0.1	<0.1	200	0

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Original			Paramotor	Units	LOR	Original		od: ME-(AU)- Criteria %	
Original	Duplicate		Parameter						RPD
SE183216.011	LB155627.023		p,p'-DDT	mg/kg	0.1	<0.1	<0.1	200	0
			Endosulfan sulphate	mg/kg	0.1	<0.1	<0.1	200	0
			Endrin Aldehyde	mg/kg	0.1	<0.1	<0.1	200	0
			Methoxychlor	mg/kg	0.1	<0.1	<0.1	200	0
			Endrin Ketone	mg/kg	0.1	<0.1	<0.1	200	0
			Isodrin	mg/kg	0.1	<0.1	<0.1	200	0
			Mirex	mg/kg	0.1	<0.1	<0.1	200	0
		-	Total CLP OC Pesticides	mg/kg	1	<1	<1	200	0
		Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0.19	0.19	30	3
P Pesticides in S	oil						Meth	od: ME-(AU)-	[ENV]A
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD
SE183216.002	LB155627.026		Dichlorvos	mg/kg	0.5	<0.5	<0.5	200	0
			Dimethoate	mg/kg	0.5	<0.5	<0.5	200	0
			Diazinon (Dimpylate)	mg/kg	0.5	<0.5	<0.5	200	0
			Fenitrothion	mg/kg	0.2	<0.2	<0.2	200	0
			Malathion	mg/kg	0.2	<0.2	<0.2	200	0
			Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2	<0.2	200	0
			Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	<0.2	200	0
			Bromophos Ethyl	mg/kg	0.2	<0.2	<0.2	200	0
			Methidathion		0.2	<0.2	<0.2	200	0
				mg/kg					
			Ethion	mg/kg	0.2	<0.2	<0.2	200	0
			Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	<0.2	200	0
			Total OP Pesticides*	mg/kg	1.7	<1.7	<1.7	200	0
		Surrogates	2-fluorobiphenyl (Surrogate)	mg/kg	-	0.4	0.4	30	0
			d14-p-terphenyl (Surrogate)	mg/kg	-	0.5	0.5	30	0
E183216.011	LB155627.023		Dichlorvos	mg/kg	0.5	<0.5	<0.5	200	0
			Dimethoate	mg/kg	0.5	<0.5	<0.5	200	0
			Diazinon (Dimpylate)	mg/kg	0.5	<0.5	<0.5	200	0
			Fenitrothion	mg/kg	0.2	<0.2	<0.2	200	0
			Malathion	mg/kg	0.2	<0.2	<0.2	200	0
			Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2	<0.2	200	0
			Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	<0.2	200	0
			Bromophos Ethyl	mg/kg	0.2	<0.2	<0.2	200	0
			Methidathion	mg/kg	0.5	<0.5	<0.5	200	0
			Ethion	mg/kg	0.2	<0.2	<0.2	200	C
			Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	<0.2	200	C
			Total OP Pesticides*	mg/kg	1.7	<1.7	<1.7	200	C
		Surrogates	2-fluorobiphenyl (Surrogate)	mg/kg	-	0.5	0.5	30	2
		Sunoguloo	d14-p-terphenyl (Surrogate)	mg/kg	-	0.5	0.5	30	4
						0.0			
	Aromatic Hydrocarb	ons) in Soil						od: ME-(AU)-	
Priginal	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPI
E183216.002	LB155627.026		Naphthalene	mg/kg	0.1	<0.1	<0.1	200	C
			2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	200	0
			1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	200	C
			Acenaphthylene	mg/kg	0.1	<0.1	<0.1	200	C
			Acenaphthene	mg/kg	0.1	<0.1	<0.1	200	C
			Fluorene	mg/kg	0.1	<0.1	<0.1	200	(
			Phenanthrene	mg/kg	0.1	<0.1	<0.1	200	(
			Anthracene	mg/kg	0.1	<0.1	<0.1	200	(
			Fluoranthene	mg/kg	0.1	<0.1	<0.1	200	
			Pyrene	mg/kg	0.1	<0.1	<0.1	200	
			Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1	200	
			Chrysene	mg/kg	0.1	<0.1	<0.1	200	
									(
			Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	<0.1	200	
			Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1	200	(
			Benzo(a)pyrene	mg/kg	0.1	<0.1	<0.1	200	(
			Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1	200	0
			Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	200	0
			Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1	200	(

Carcinogenic PAHs, BaP TEQ <LOR=0

mg/kg

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

riginal	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD
E183216.002	LB155627.026		Carcinogenic PAHs, BaP TEQ <lor=lor< th=""><th>mg/kg</th><th>0.3</th><th><0.3</th><th><0.3</th><th>134</th><th>0</th></lor=lor<>	mg/kg	0.3	<0.3	<0.3	134	0
			Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>mg/kg</td><td>0.2</td><td><0.2</td><td><0.2</td><td>175</td><td>0</td></lor=lor>	mg/kg	0.2	<0.2	<0.2	175	0
			Total PAH (18)	mg/kg	0.8	<0.8	<0.8	200	0
		Surrogates	d5-nitrobenzene (Surrogate)	mg/kg		0.4	0.4	30	2
		Sunogates	2-fluorobiphenyl (Surrogate)	mg/kg		0.4	0.4	30	
			d14-p-terphenyl (Surrogate)			0.4	0.4	30	
183216.011	LB155627.023		Naphthalene	mg/kg		<0.1	<0.1	200	
103210.011	LB155027.025			mg/kg	0.1			200	
			2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1		
			1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	200	
			Acenaphthylene	mg/kg	0.1	<0.1	<0.1	200	
			Acenaphthene	mg/kg	0.1	<0.1	<0.1	200	
			Fluorene	mg/kg	0.1	<0.1	<0.1	200	
			Phenanthrene	mg/kg	0.1	<0.1	<0.1	200	
			Anthracene	mg/kg	0.1	<0.1	<0.1	200	
			Fluoranthene	mg/kg	0.1	<0.1	<0.1	200	
			Pyrene	mg/kg	0.1	<0.1	<0.1	200	
			Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1	200	
			Chrysene	mg/kg	0.1	<0.1	<0.1	200	
			Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	<0.1	200	
			Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1	200	
			Benzo(a)pyrene	mg/kg	0.1	<0.1	<0.1	200	
			Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1	200	
			Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	200	
			Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1	200	
			Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>mg/kg</td><td>0.2</td><td><0.2</td><td><0.2</td><td>200</td><td></td></lor=0<>	mg/kg	0.2	<0.2	<0.2	200	
			Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>mg/kg</td><td>0.3</td><td><0.3</td><td><0.3</td><td>134</td><td></td></lor=lor<>	mg/kg	0.3	<0.3	<0.3	134	
			Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>mg/kg</td><td>0.2</td><td><0.2</td><td><0.2</td><td>175</td><td></td></lor=lor>	mg/kg	0.2	<0.2	<0.2	175	
			Total PAH (18)	mg/kg	0.8	<0.8	<0.8	200	
		Surrogates	d5-nitrobenzene (Surrogate)	mg/kg	-	0.4	0.4	30	
		ounogates	2-fluorobiphenyl (Surrogate)	mg/kg		0.5	0.5	30	
			d14-p-terphenyl (Surrogate)	mg/kg		0.5	0.5	30	
				nigrkg		0.5			
Bs in Soil							Meth	od: ME-(AU)-	-[ENV]
iginal	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RP
183216.001	LB155627.025		Arochlor 1016	mg/kg	0.2	<0.2	<0.2	200	
			Arochlor 1221	mg/kg	0.2	<0.2	<0.2	200	
			Arochlor 1232	mg/kg	0.2	<0.2	<0.2	200	
			Arochlor 1242	mg/kg	0.2	<0.2	<0.2	200	
			Arochlor 1248	mg/kg	0.2	<0.2	<0.2	200	
			Arochlor 1254	mg/kg	0.2	<0.2	<0.2	200	
			Arochlor 1260	mg/kg	0.2	<0.2	<0.2	200	
			Arochlor 1262	mg/kg	0.2	<0.2	<0.2	200	
			Arochlor 1268	mg/kg	0.2	<0.2	<0.2	200	
			Total PCBs (Arochlors)	mg/kg	1	<1	<1	200	
		Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg		0	0	30	
183216.011	LB155627.023	ounogates	Arochlor 1016		0.2			200	
103210.011	LB155027.025		Arochlor 1221	mg/kg	0.2	<0.2	<0.2	200	
				mg/kg					
			Arochlor 1232	mg/kg	0.2	<0.2	<0.2	200	
			Arochlor 1242	mg/kg	0.2	<0.2	<0.2	200	
			Arochlor 1248	mg/kg	0.2	<0.2	<0.2	200	
			Arochlor 1254	mg/kg	0.2	<0.2	<0.2	200	
			Arochlor 1260	mg/kg	0.2	<0.2	<0.2	200	
			Arochlor 1262	mg/kg	0.2	<0.2	<0.2	200	
			Arochlor 1268	mg/kg	0.2	<0.2	<0.2	200	
			Total PCBs (Arochlors)	mg/kg	1	<1	<1	200	
		Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0	0	30	

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD
SE183216.003	LB155629.014		Arsenic, As	mg/kg	1	2	3	73	41
			Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	200	0
			Chromium, Cr	mg/kg	0.3	3.0	3.3	46	7
			Copper, Cu	mg/kg	0.5	<0.5	<0.5	200	0
			Nickel, Ni	mg/kg	0.5	<0.5	<0.5	200	0
			Lead, Pb	mg/kg	1	3	3	64	4
			Zinc, Zn	mg/kg	2	3.0	3.0	97	3
E183216.011	LB155629.023		Arsenic, As	mg/kg	1	1	<1	134	32
			Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	200	0
			Chromium, Cr	mg/kg	0.3	2.8	2.3	49	19
			Copper, Cu	mg/kg	0.5	<0.5	<0.5	200	0
			Nickel, Ni		0.5	<0.5	<0.5	200	0
				mg/kg					
			Lead, Pb	mg/kg	1	2	<1	129	63
			Zinc, Zn	mg/kg	2	<2.0	<2.0	200	0
RH (Total Recov	erable Hydrocarbons) in Soil					Met	hod: ME-(AU)-	[ENV]A
Driginal	Duplicate		Parameter	Units	LOR	Original	Dunlicate	Criteria %	RPD
E183216.002	LB155627.025		TRH C10-C14		20				0
E 1032 10.002	LD100027.025			mg/kg		<20	<20	200	
			TRH C15-C28	mg/kg	45	<45	<45	200	0
			TRH C29-C36	mg/kg	45	<45	<45	200	0
			TRH C37-C40	mg/kg	100	<100	<100	200	0
			TRH C10-C36 Total	mg/kg	110	<110	<110	200	0
			TRH C10-C40 Total (F bands)	mg/kg	210	<210	<210	200	0
		TRH F Bands	TRH >C10-C16	mg/kg	25	<25	<25	200	0
			TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	<25	<25	200	0
			TRH >C16-C34 (F3)	mg/kg	90	<90	<90	200	C
			TRH >C34-C40 (F4)	mg/kg	120	<120	<120	200	0
E 402246 044	1 0455607 000								
E183216.011	LB155627.023		TRH C10-C14	mg/kg	20	<20	<20	200	0
			TRH C15-C28	mg/kg	45	<45	<45	200	0
			TRH C29-C36	mg/kg	45	<45	<45	200	0
			TRH C37-C40	mg/kg	100	<100	<100	200	0
			TRH C10-C36 Total	mg/kg	110	<110	<110	200	0
			TRH C10-C40 Total (F bands)	mg/kg	210	<210	<210	200	0
		TRH F Bands	TRH >C10-C16	mg/kg	25	<25	<25	200	0
			TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	<25	<25	200	0
			TRH >C16-C34 (F3)	mg/kg	90	<90	<90	200	0
			TRH >C34-C40 (F4)	mg/kg	120	<120	<120	200	0
				nigrig	120	-120			
OC's in Soil							Met	hod: ME-(AU)-	(ENV)A
Driginal	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD
E183216.003	LB155626.014	Monocyclic	Benzene	mg/kg	0.1	<0.1	<0.1	200	0
		Aromatic	Toluene	mg/kg	0.1	<0.1	<0.1	200	0
			Ethylbenzene	mg/kg	0.1	<0.1	<0.1	200	0
									0
			m/p-xylene	mg/kg	0.2	<0.2	<0.2	200	
			o-xylene	mg/kg	0.1	<0.1	<0.1	200	0
		Polycyclic	Naphthalene	mg/kg	0.1	<0.1	<0.1	200	0
		Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	3.7	4.3	50	1
			d4-1,2-dichloroethane (Surrogate)	mg/kg	-	4.0	4.6	50	1
			d8-toluene (Surrogate)	mg/kg	-	3.5	4.1	50	1
			Bromofluorobenzene (Surrogate)	mg/kg	-	3.8	3.5	50	7
		Totals	Total Xylenes	mg/kg	0.3	<0.3	<0.3	200	0
			Total BTEX	mg/kg	0.6	<0.6	<0.6	200	
E183216.011	LB155626.023	Monocyclic	Benzene	mg/kg	0.0	<0.1	<0.1	200	0
	20100020.020	Aromatic	Toluene		0.1	<0.1	<0.1	200	0
		Aromatic		mg/kg					
			Ethylbenzene	mg/kg	0.1	<0.1	<0.1	200	C
			m/p-xylene	mg/kg	0.2	<0.2	<0.2	200	0
			o-xylene	mg/kg	0.1	<0.1	<0.1	200	0
		Polycyclic	Naphthalene	mg/kg	0.1	<0.1	<0.1	200	0
		Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	3.9	4.2	50	6
			d4-1,2-dichloroethane (Surrogate)	mg/kg	-	4.2	4.5	50	6

d8-toluene (Surrogate)

Bromofluorobenzene (Surrogate)

7

3.8

4.0

mg/kg

mg/kg

4.1

3.6

50

50

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

VOC's in Soil (con	tinued)						Mett	nod: ME-(AU)-	(ENVJAN43
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE183216.011	LB155626.023	Totals	Total Xylenes	mg/kg	0.3	<0.3	<0.3	200	0
			Total BTEX	mg/kg	0.6	<0.6	<0.6	200	0
VOCs in Water							Meth	nod: ME-(AU)-	[ENV]AN43
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE183216.012	LB155745.022	Monocyclic	Benzene	μg/L	0.5	<0.5	<0.5	200	0
02100210.012		Aromatic	Toluene	μg/L	0.5	<0.5	<0.5	200	0
		, a official	Ethylbenzene	μg/L	0.5	<0.5	<0.5	200	0
			m/p-xylene	μg/L	1	<1	<1	200	0
			o-xylene	μg/L	0.5	<0.5	<0.5	200	0
		Polycyclic	Naphthalene	μg/L	0.5	<0.5	<0.5	200	0
		Surrogates	Dibromofluoromethane (Surrogate)	μg/L	-	5.1	4.9	30	4
		currogutoo	d4-1,2-dichloroethane (Surrogate)	μg/L	-	5.7	5.5	30	4
			d8-toluene (Surrogate)	μg/L		5.1	4.8	30	4
			Bromofluorobenzene (Surrogate)	μg/L		4.3	4.4	30	2
Volatile Petroleum	Hydrocarbons in Soi		Dromondorobonzono (olarrogato)	P3, -		1.0		nod: ME-(AU)-	
Original	Duplicate	•	Parameter	Units	LOR	Original		Criteria %	RPD %
SE183216.003	LB155626.014		TRH C6-C10	mg/kg	25	<25	<25	200	0
3E 1832 10.003	LB155020.014		TRH C6-C9	mg/kg	20	<20	<20	200	0
		Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	- 20	3.7	4.3	30	15
		Surrogates	d4-1,2-dichloroethane (Surrogate)	mg/kg		4.0	4.6	30	15
			d8-toluene (Surrogate)			3.5	4.0	30	15
			Bromofluorobenzene (Surrogate)	mg/kg		3.8	3.5	30	7
		VPH F Bands	Benzene (F0)	mg/kg mg/kg	0.1	<0.1	<0.1	200	0
		VEH E Danus	TRH C6-C10 minus BTEX (F1)		25	<25	<25	200	0
SE183216.011	LB155626.023		TRH C6-C10	mg/kg	25	<25	<25	200	0
3E103210.011	LB155020.025		TRH C6-C9	mg/kg	20	<20	<20	200	0
		Surrogates	Dibromofluoromethane (Surrogate)	mg/kg mg/kg	- 20	3.9	4.2	30	6
		Surroyates	d4-1,2-dichloroethane (Surrogate)			4.2	4.2	30	6
				mg/kg		3.8	4.5	30	7
			d8-toluene (Surrogate)	mg/kg		4.0	3.6	30	11
		VOLLE Develo	Bromofluorobenzene (Surrogate)	mg/kg					
		VPH F Bands	Benzene (F0)	mg/kg	0.1	<0.1	<0.1	200	0
			TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	200	0
	Hydrocarbons in Wa	iter						nod: ME-(AU)-	
Original	Duplicate		Parameter	Units	LOR	Original		Criteria %	RPD %
SE183216.012	LB155745.022		TRH C6-C10	µg/L	50	<50	<50	200	0
			TRH C6-C9	µg/L	40	<40	<40	200	0
		Surrogates	Dibromofluoromethane (Surrogate)	μg/L	-	5.1	4.9	30	4
			d4-1,2-dichloroethane (Surrogate)	μg/L	-	5.7	5.5	30	4
			d8-toluene (Surrogate)	μg/L	-	5.1	4.8	30	4
			Bromofluorobenzene (Surrogate)	μg/L	-	4.3	4.4	30	2
		VPH F Bands	Benzene (F0)	µg/L	0.5	<0.5	<0.5	200	0
			TRH C6-C10 minus BTEX (F1)	µg/L	50	<50	<50	200	0
SE183244.010	LB155745.023		TRH C6-C10	μg/L	50	0	0	200	0
			TRH C6-C9	µg/L	40	0	0	200	0
		Surrogates	Dibromofluoromethane (Surrogate)	µg/L	-	4.8	5.31	30	10
			d4-1,2-dichloroethane (Surrogate)	µg/L	-	5.45	6.05	30	10
			d8-toluene (Surrogate)	µg/L	-	4.8	5.22	30	8
			Bromofluorobenzene (Surrogate)	μg/L	-	4.21	4.16	30	1
		VPH F Bands	Benzene (F0)	µg/L	0.5	0.05	0.04	200	0
			TRH C6-C10 minus BTEX (F1)	µg/L	50	-0.16	-0.17	200	0

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Exchangeable Cations and C	ation Exchange Capacity (CEC/ESP/SAR)		Method: ME-(AU)-[ENV]A				
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB155649.002	Exchangeable Sodium, Na	mg/kg	2	NA	72.68	80 - 120	102
	Exchangeable Potassium, K	mg/kg	2	NA	238.12	80 - 120	97
	Exchangeable Calcium, Ca	mg/kg	2	NA	692	80 - 120	91
	Exchangeable Magnesium, Mg	mg/kg	2	NA	134.2	80 - 120	100
Mercury in Soil					N	Nethod: ME-(A	U)-[ENV]AN31
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB155630.002	Mercury	mg/kg	0.05	0.19	0.2	70 - 130	96

OC Pesticides in Soil

Besser 2002 Hepachlor mg/kg 0.1 0.2 0.2 60.140 0.00 Adrin mg/kg 0.1 0.2 0.2 0.0140 0.00 Della Bl/C mg/kg 0.1 0.2 0.2 0.0140 0.00 Delda Dir mg/kg 0.2 0.2 0.0140 0.00<	OC Pesticides in So	bil					1	Method: ME-(A	U)-[ENV]AN42
Addin Mathin mg/hg 0.1 0.2 0.2 60.14 0.16 Datedrin mg/hg 0.1 0.2 0.2 0.01 0.02 Datedrin mg/hg 0.2 0.2 0.01 0.02 0.01 0.02 Burgote Tetrachionom-xylene (TCMX) (Surogate) mg/hg 0.1 0.2 0.2 0.01 0.01 Surogate Tetrachionom-xylene (TCMX) (Surogate) mg/hg 0.1 0.02 0.02 0.01 <td< th=""><th>Sample Number</th><th></th><th>Parameter</th><th>Units</th><th>LOR</th><th>Result</th><th>Expected</th><th>Criteria %</th><th>Recovery %</th></td<>	Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
Delia BHC mg/sq 0.1 0.2 0.2 0.0.1 0.1 Defin mg/sq 0.2 0.2 0.2 0.0.1 0.0 p/DDT mg/sq 0.1 0.2 0.2 0.0.1 0.0 surrage mode p/DDT mg/sq 0.1 0.2 0.2 0.0.1 0.0 Pertodices mode mg/sq 0.1 0.2 0.2 0.0 0.0 Surrage mode Parameter Distance Distance Result Expected Criteria % Recovery Bis5827.002 Distance Ng/sq 0.5 2.0 0.2 0.0 0.0 Dazion Ofmy/stel Diazon mg/sq 0.2 1.8 0.0 <	LB155627.002		Heptachlor	mg/kg	0.1	0.2	0.2	60 - 140	109
Deletinin mg/kg 0.2 0.2 0.2 0.01 0.05 Endmin mg/kg 0.2 0.2 0.2 0.01 0.99 p.p':DDT mg/kg 0.1 0.15 40-130 99 Surrogates Tetrachloro-m-xylene (TCMX) (Surrogate) mg/kg 0.1 0.15 40-130 96 PP esettices in Sol Dichtorom-xylene (TCMX) (Surrogate) mg/kg 0.5 2.0 2.2 60-140 1015 Sample Number Parenetor Mathematica mg/kg 0.5 2.0 2.2 60-140 1010 Dichtorymos mg/kg 0.5 2.3 2 60-140 1010 Discorymos mg/kg 0.5 2.3 2 60-140 1010 Surrogates 24/uorobichenyl (Surrogate) mg/kg 0.2 0.5 0.5 40-130 90 ElsioS627.002 Varrogates 24/uorobichenyl (Surrogate) mg/kg 0.1 4.2 4 60-140 1016 60-140			Aldrin	mg/kg	0.1	0.2	0.2	60 - 140	106
Endmin mg/kg 0.2 40.2 0.2 0.2 0.1 0.2 0.2 0.1 0.0 0.1 0.0 0			Delta BHC	mg/kg	0.1	0.2	0.2	60 - 140	104
pp/DDT mg/kg 0.1 0.2 0.2 0.0 0.1 0.2 0.0 0.			Dieldrin	mg/kg	0.2	0.2	0.2	60 - 140	105
SurogatesSurogatesIngited00.140.150.100.160.16Peetidides In SolfParanterParanterUnitsLORResultExpectedCriteriaRecoverySample NumberDichlorovomg/kg0.52.02.06.010.0Dichlorovomg/kg0.52.326010.0Dichlorovomg/kg0.52.326010.0Dichlorovomg/kg0.52.326010.0Dichlorovomg/kg0.22.226010.0Dichlorovomg/kg0.21.82.060.010.0SurogatesEhionmg/kg0.20.540.1010.0Autorbhenyl (Surogate)mg/kg0.20.540.1010.0Autorbhenyl (Surogate)mg/kg0.14.240.10010.0Autorbhenyl (Surogate)mg/kg0.14.240.01010.0Sample NumberParametermg/kg0.14.240.01010.0Autorbhenemg/kg0.14.240.01010.010.0Sample NumberParametermg/kg0.14.240.01010.0Parametermg/kg0.14.240.01010.010.0Parametermg/kg0.14.140.01010.010.0Parametermg/kg0.14.140.01010.010.0Parametermg/kg<			Endrin	mg/kg	0.2	<0.2	0.2	60 - 140	99
PP Pesticides in Soll Method: ME-(AU)-[ENV]AN Sample Number Parameter Units LOR Result Expected Criteria % Recovery Bi55627.002 Diaziono (Dimyide) mg/kg 0.5 2.0 2 60 · 140 100 Diaziono (Dimyide) mg/kg 0.5 2.3 2 60 · 140 100 Elifion mg/kg 0.2 2.2 2 60 · 140 108 Surrogates 2-fluorobipenyl (Surrogate) mg/kg 0.2 2.1 80 · 140 108 Sample Number Parameter mg/kg 0.2 1.8 2 60 · 140 108 Sample Number Parameter mg/kg 0.2 0.5 0.5 40 · 130 90 Sample Number Parameter Units LOR Result Expected Criteria % Recovery LBI55627.002 Naphthalme mg/kg 0.1 4.2 4 60 · 140 106 Acenaphthylene mg/kg 0.1			p,p'-DDT	mg/kg	0.1	0.2	0.2	60 - 140	89
Sample Number Parameter Units LOR Result Expected Criteria % Recovery LB155527.002 Dichlorvos mg/kg 0.5 2.0 2 60-140 100 LB155527.002 Dichlorvorfios (Chioryvifos Ethyl) mg/kg 0.5 2.3 2 60-140 117 Chioryvifos (Chioryvifos Ethyl) mg/kg 0.2 1.8 2 60-140 100 Ethion mg/kg 0.2 1.8 2 60-140 89 Surogates 2-fluorobipheryl (Surogate) mg/kg 0.2 1.8 2 60-140 89 Surogates 2-fluorobipheryl (Surogate) mg/kg 0.5 0.5 40-130 90 AtH Polynuclear Aromatic Hydrocarborn) Bott Expected Criteria % Recovery LB155627.002 Naphthalene mg/kg 0.1 4.2 4 60-140 106 Acenaphthylene mg/kg 0.1 4.2 4 60-140 106 Prienafthre		Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0.14	0.15	40 - 130	96
Bits627.002 Dichorvos mg/kg 0.5 2.0 2 60.140 100 Diazinon (Dimpylate) mg/kg 0.5 2.3 2 60.140 117 Chlorpyrifos (Chlorpyrifos Ethyl) mg/kg 0.2 2.2 2 60.140 108 Surrogates 2 Huorobiphenyl (Surrogate) mg/kg 0.5 0.5 40.130 90 YAH (Polynuclear Aromatic Hydrocarbors) In Soll mg/kg - 0.5 0.5 40.130 92 YAH (Polynuclear Aromatic Hydrocarbors) In Soll mg/kg - 0.5 0.5 40.130 92 YAH (Polynuclear Aromatic Hydrocarbors) In Soll mg/kg - 0.5 0.5 40.130 92 YAH (Polynuclear Aromatic Hydrocarbors) In Soll mg/kg 0.1 4.2 4 60.140 106 Sample Number Parameter mg/kg 0.1 4.2 4 60.140 105 Acenaphthylene mg/kg 0.1 4.1 4 60.140 104 <t< td=""><td>OP Pesticides in Sc</td><td>il -</td><td></td><td></td><td></td><td></td><td>1</td><td>Method: ME-(A</td><td>U)-[ENV]AN4</td></t<>	OP Pesticides in Sc	il -					1	Method: ME-(A	U)-[ENV]AN4
Diazion (Dimpylate) mg/kg 0.5 2.3 2 60 - 140 117 Chlorpyrifos (Chlorpyrifos Ethyl) mg/kg 0.2 2.2 2 60 - 140 108 Surrogates Zinobiphenyl (Surogate) mg/kg 0.2 1.8 2 60 - 140 108 Surrogates Zinobiphenyl (Surogate) mg/kg -0.5 0.5 40 - 130 90 Chlorpyrifos (Chlorpyrifos Ethyl) mg/kg -0.5 0.5 40 - 130 90 Chlorpyrifos (Divorgate) mg/kg -0.5 0.5 40 - 130 90 Chlorpyrifos (Divorgate) mg/kg 0.1 4.2 4 60 - 140 106 Surrogates Naphthalene mg/kg 0.1 4.2 4 60 - 140 106 Accenaphthylene mg/kg 0.1 4.2 4 60 - 140 106 Accenaphthene mg/kg 0.1 4.2 4 60 - 140 108 Florenthene mg/kg 0.1 4.1 4 <td>Sample Number</td> <td></td> <td>Parameter</td> <td>Units</td> <td>LOR</td> <td>Result</td> <td>Expected</td> <td>Criteria %</td> <td>Recovery %</td>	Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
Chlorpyrifos (Chlorpyrifos Ethyl) mg/kg 0.2 2.2 2 60 - 140 108 Ethion mg/kg 0.2 1.8 2 60 - 140 89 Surogates 2-fluorobjhenyl (Surogate) mg/kg 0.2 1.8 2 60 - 140 89 Atl (Polynuclear Aromatic Hydrocarbox) in Soll mg/kg 0.5 0.5 40 - 130 90 Sample Number Parameter Notits LOR Result Expected Criteria % Recovery Sample Number Parameter mg/kg 0.1 4.2 4 60 - 140 106 Sample Number Parameter mg/kg 0.1 4.2 4 60 - 140 106 Acenaphthylene mg/kg 0.1 4.2 4 60 - 140 106 Acenaphthylene mg/kg 0.1 4.4 40 - 140 106 Acenaphthylene mg/kg 0.1 4.4 40 - 140 108 Acenaphthylene mg/kg 0.1 4.4	LB155627.002		Dichlorvos	mg/kg	0.5	2.0	2	60 - 140	100
Ethion mg/kg 0.2 1.8 2 60-140 89 Surogates 2-fluorobiphenyl (Surogate) mg/kg - 0.5 0.5 40-130 90 d14-perphenyl (Surogate) mg/kg - 0.5 0.5 40-130 90 v2M (Polynuckear Aromatic Hydrocarbons) in Sol mg/kg - 0.5 0.5 40-130 92 Sample Number Parameter Units LOR Result Expected Criteria % Recovery LB155627.002 Naphthalene mg/kg 0.1 4.2 4 60-140 106 Acenaphthylene mg/kg 0.1 4.2 4 60-140 104 Acenaphthene mg/kg 0.1 4.2 4 60-140 104 Piteriathrene mg/kg 0.1 4.4 4 60-140 104 Piteriathrene mg/kg 0.1 4.4 4 60-140 108 Benzo(a)prene mg/kg 0.1 4.4			Diazinon (Dimpylate)	mg/kg	0.5	2.3	2	60 - 140	117
Surrogates 2-fluorobiphenyl (Surrogate) mg/kg - 0.5 0.5 40 - 130 90 Atl (-p-terphenyl (Surrogate) mg/kg - 0.5 0.5 40 - 130 92 Atl (Polynuclear Aromatic Hydrocarbons) in Soll searnot in the second in th			Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	2.2	2	60 - 140	108
d14-p-terphenyl (Surrogate) mg/kg - 0.5 0.5 40 - 130 92 AAH (Polynuclear Aromatic Hydrocarbors) In Soll bethed: KE-(AU-)ENV/AN Sample Number Parameter Parameter Units LOR Result Expected Criteria % Recovery LB155627.002 Naphthalene mg/kg 0.1 4.2 4 60 - 140 105 Acenaphthylene mg/kg 0.1 4.2 4 60 - 140 105 Acenaphthene mg/kg 0.1 4.2 4 60 - 140 105 Phenanthrene mg/kg 0.1 4.2 4 60 - 140 104 Phenanthrene mg/kg 0.1 4.2 4 60 - 140 104 Putracene mg/kg 0.1 4.1 4 60 - 140 103 Puronanthene mg/kg 0.1 4.3 4 60 - 140 108 Benzo(a)pyrene mg/kg 0.1 4.3 40 - 130 108 Benzo(a)pyrene mg/kg 0.1 4.3 40 - 130 108 2-fluorobiphenyl (Surrogate) mg/kg 0.5 0.5 40 - 130 90 2-fluorobiphenyl (Surrogate) mg/kg			Ethion	mg/kg	0.2	1.8	2	60 - 140	89
AH (Polynuclear Aromatic Hydrocarbons) in Soll Nathod: ME-(AU)-[ENV]AN Sample Number Parameter Units LOR Result Expected Criteria % Recovery LB155627.002 Naphthalene mg/kg 0.1 4.2 4 60 - 140 106 Acenaphthylene mg/kg 0.1 4.2 4 60 - 140 105 Acenaphthene mg/kg 0.1 4.2 4 60 - 140 104 Anthracene mg/kg 0.1 4.2 4 60 - 140 104 Fluoranthene mg/kg 0.1 4.1 4 60 - 140 104 Anthracene mg/kg 0.1 4.1 4 60 - 140 103 Pyrene mg/kg 0.1 4.4 4 60 - 140 108 Benzo(a)pyrene mg/kg 0.1 4.3 4 60 - 140 108 Surrogates d5-nitrobenzene (Surrogate) mg/kg 0.1 4.3 4 60 - 140 108		Surrogates	2-fluorobiphenyl (Surrogate)	mg/kg	-	0.5	0.5	40 - 130	90
Sample Number Parameter Units LOR Result Expected Criteria % Recovery LB155627.002 Naphthalene mg/kg 0.1 4.2 4 60 - 140 106 Acenaphthylene mg/kg 0.1 4.2 4 60 - 140 105 Acenaphthylene mg/kg 0.1 3.9 4 60 - 140 104 Acenaphthylene mg/kg 0.1 4.2 4 60 - 140 104 Acenaphthylene mg/kg 0.1 4.2 4 60 - 140 104 Acenaphthylene mg/kg 0.1 4.2 4 60 - 140 104 Anthracene mg/kg 0.1 4.1 4 60 - 140 108 Fluoranthene mg/kg 0.1 4.3 4 60 - 140 108 Benzo(a)pyrene mg/kg 0.1 4.7 4 60 - 140 118 Surrogates d5-nitrobenzene (Surrogate) mg/kg - 0.5 0.5			d14-p-terphenyl (Surrogate)	mg/kg	-	0.5	0.5	40 - 130	92
LB155627.002 Naphthalene Maphthalene mg/kg 0.1 4.2 4 60 - 140 105 Acenaphthylene mg/kg 0.1 4.2 4 60 - 140 105 Acenaphthylene mg/kg 0.1 3.9 4 60 - 140 104 Acenaphthene mg/kg 0.1 4.2 4 60 - 140 104 Acenaphthene mg/kg 0.1 4.2 4 60 - 140 104 Anthracene mg/kg 0.1 4.1 4 60 - 140 103 Fluoranthene mg/kg 0.1 4.4 4 60 - 140 109 Pyrene mg/kg 0.1 4.3 4 60 - 140 108 Benzo(a)pyrene mg/kg 0.1 4.7 4 60 - 140 108 2-fluorobiphenyl (Surrogate) mg/kg 0.1 4.7 4 60 - 140 118 2-fluorobiphenyl (Surrogate) mg/kg -1 0.5 0.5 40 - 130	PAH (Polynuclear A	romatic Hydroca	rbons) in Soil				1	Method: ME-(A	U)-[ENV]AN42
Acenaphthylene mg/kg 0.1 4.2 4 60-140 105 Acenaphthene mg/kg 0.1 3.9 4 60-140 97 Phenanthrene mg/kg 0.1 4.2 4 60-140 104 Acenaphthene mg/kg 0.1 4.2 4 60-140 104 Phenanthrene mg/kg 0.1 4.1 4 60-140 103 Fluoranthene mg/kg 0.1 4.4 4 60-140 109 Pyrene mg/kg 0.1 4.3 4 60-140 108 Benzo(a)pyrene mg/kg 0.1 4.3 4 60-140 118 Surrogates d5-nitrobenzene (Surrogate) mg/kg 0.1 4.7 4 60-140 118 2-fluorobiphenyl (Surrogate) mg/kg 0.1 4.7 4 60-140 18 2-fluorobiphenyl (Surrogate) mg/kg - 0.5 0.5 40-130 90	Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
Acenaphthene mg/kg 0.1 3.9 4 60-140 97 Phenanthrene mg/kg 0.1 4.2 4 60-140 104 Anthracene mg/kg 0.1 4.2 4 60-140 103 Fluoranthene mg/kg 0.1 4.1 4 60-140 103 Pyrene mg/kg 0.1 4.4 4 60-140 109 Pyrene mg/kg 0.1 4.3 4 60-140 108 Benzo(a)pyrene mg/kg 0.1 4.3 4 60-140 108 Surrogates d5-nitrobenzene (Surrogate) mg/kg 0.1 4.7 4 60-140 118 2-fluorobiphenyl (Surrogate) mg/kg - 0.4 0.5 40-130 90 014-p-terphenyl (Surrogate) mg/kg - 0.5 0.5 40-130 92 Units LOR Result Expected Criteris & Recovery	LB155627.002		Naphthalene	mg/kg	0.1	4.2	4	60 - 140	106
Phenanthrene mg/kg 0.1 4.2 4 60 - 140 104 Anthracene mg/kg 0.1 4.1 4 60 - 140 103 Fluoranthene mg/kg 0.1 4.1 4 60 - 140 103 Pyrene mg/kg 0.1 4.4 4 60 - 140 108 Benzo(a)pyrene mg/kg 0.1 4.3 4 60 - 140 108 Surrogates d5-nitrobenzene (Surrogate) mg/kg 0.1 4.7 4 60 - 140 118 2-fluorobiphenyl (Surrogate) mg/kg 0.1 4.7 4 60 - 140 118 2-fluorobiphenyl (Surrogate) mg/kg - 0.4 0.5 40 - 130 78 2-fluorobiphenyl (Surrogate) mg/kg - 0.5 0.5 40 - 130 90 d14-p-terphenyl (Surrogate) mg/kg - 0.5 0.5 40 - 130 92 verterphenyl (Surrogate) mg/kg - 0.5			Acenaphthylene	mg/kg	0.1	4.2	4	60 - 140	105
Anthracene mg/kg 0.1 4.1 4 60-140 103 Fluoranthene mg/kg 0.1 4.4 4 60-140 109 Pyrene mg/kg 0.1 4.4 4 60-140 109 Benzo(a)pyrene mg/kg 0.1 4.3 4 60-140 108 Surrogates d5-nitrobenzene (Surrogate) mg/kg 0.1 4.7 4 60-140 118 2-fluorobiphenyl (Surrogate) mg/kg - 0.4 0.5 40-130 78 2-fluorobiphenyl (Surrogate) mg/kg - 0.5 0.5 40-130 90 d14-p-terphenyl (Surrogate) mg/kg - 0.5 0.5 40-130 92 CPBs in Soll Sample Number Parameter Units LOR Result Expected Criteria % Recovery			Acenaphthene	mg/kg	0.1	3.9	4	60 - 140	97
Fluoranthene mg/kg 0.1 4.4 4 60 - 140 109 Pyrene mg/kg 0.1 4.3 4 60 - 140 108 Benzo(a)pyrene mg/kg 0.1 4.7 4 60 - 140 118 Surrogates d5-nitrobenzene (Surrogate) mg/kg - 0.4 0.5 40 - 130 78 2-fluorobiphenyl (Surrogate) mg/kg - 0.5 0.5 40 - 130 90 d14-p-terphenyl (Surrogate) mg/kg - 0.5 0.5 40 - 130 92 *CBs in Soil ************************************			Phenanthrene	mg/kg	0.1	4.2	4	60 - 140	104
Pyrene mg/kg 0.1 4.3 4 60 - 140 108 Benzo(a)pyrene mg/kg 0.1 4.7 4 60 - 140 118 Surrogates d5-nitrobenzene (Surrogate) mg/kg - 0.4 0.5 40 - 130 78 2-fluorobiphenyl (Surrogate) mg/kg - 0.5 0.5 40 - 130 90 d14-p-terphenyl (Surrogate) mg/kg - 0.5 0.5 40 - 130 92 *CBs in Soil ************************************			Anthracene	mg/kg	0.1	4.1	4	60 - 140	103
Benzo(a)pyrene mg/kg 0.1 4.7 4 60 - 140 118 Surrogates d5-nitrobenzene (Surrogate) mg/kg - 0.4 0.5 40 - 130 78 2-fluorobiphenyl (Surrogate) mg/kg - 0.5 0.5 40 - 130 90 d14-p-terphenyl (Surrogate) mg/kg - 0.5 0.5 40 - 130 92 *CBs in Soil ************************************			Fluoranthene	mg/kg	0.1	4.4	4	60 - 140	109
Marcal Markan Markan			Pyrene	mg/kg	0.1	4.3	4	60 - 140	108
2-fluorobiphenyl (Surrogate) mg/kg - 0.5 40 - 130 90 d14-p-terphenyl (Surrogate) mg/kg - 0.5 0.5 40 - 130 92 *CBs in Soil ************************************			Benzo(a)pyrene	mg/kg	0.1	4.7	4	60 - 140	118
d14-p-terphenyl (Surrogate) mg/kg - 0.5 0.5 40 - 130 92 *CBs in Soil *CBs in Soil * Method: ME-(AU)-[ENV]AN Sample Number Parameter Units LOR Result Expected Criteria % Recovery		Surrogates	d5-nitrobenzene (Surrogate)	mg/kg	-	0.4	0.5	40 - 130	78
CBs in Soil Method: ME-(AU)-[ENV]AN Sample Number Parameter Units LOR Result Expected Criteria % Recovery			2-fluorobiphenyl (Surrogate)	mg/kg	-	0.5	0.5	40 - 130	90
Sample Number Parameter Units LOR Result Expected Criteria % Recovery			d14-p-terphenyl (Surrogate)	mg/kg	-	0.5	0.5	40 - 130	92
	PCBs in Soil						1	Method: ME-(A	U)-[ENV]AN4
LB155627.002 Arochlor 1260 mg/kg 0.2 0.5 0.4 60 - 140 114	Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
	LB155627.002		Arochlor 1260	mg/kg	0.2	0.5	0.4	60 - 140	114

Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES

Total Recoverable Elements i	otal Recoverable Elements in Soil/Waste Solids/Materials by ICPOES					Method: ME-(AU)-[ENV]AN040/AN320			
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %		
LB155629.002	Arsenic, As	mg/kg	1	340	336.32	79 - 120	100		
	Cadmium, Cd	mg/kg	0.3	430	416.6	69 - 131	103		
	Chromium, Cr	mg/kg	0.3	38	35.2	80 - 120	109		
	Copper, Cu	mg/kg	0.5	330	370.46	80 - 120	88		
	Nickel, Ni	mg/kg	0.5	180	210.88	79 - 120	87		
	Lead, Pb	mg/kg	1	92	107.87	79 - 120	85		
	Zinc, Zn	mg/kg	2	290	301.27	80 - 121	96		
TRH (Total Recoverable Hydr	rocarbons) in Soil				N	lethod: ME-(A	U)-[ENV]AN403		
Sample Number	Parameter	Units	LOR						

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

							Nethod: ME-(AL	
ī		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery
		TRH C10-C14	mg/kg	20	43	40	60 - 140	108
		TRH C15-C28	mg/kg	45	<45	40	60 - 140	93
		TRH C29-C36	mg/kg	45	<45	40	60 - 140	80
RH (Total Pacouersh	TRH F Bands	TRH >C10-C16	mg/kg	25	39	40	60 - 140	98
RH (Total Pacouant		TRH >C16-C34 (F3)	mg/kg	90	<90	40	60 - 140	83
BH (Total Pacoucont		TRH >C34-C40 (F4)	mg/kg	120	<120	20	60 - 140	95
i i i i i i i i i i i i i i i i i i i	ble Hydrocarbor	s) in Water				I	Nethod: ME-(AL	J)-[ENV]A
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recover
_B155528.002		TRH C10-C14	µg/L	50	950	1200	60 - 140	79
		TRH C15-C28	µg/L	200	1200	1200	60 - 140	101
		TRH C29-C36	μg/L	200	1300	1200	60 - 140	110
-	TRH F Bands	TRH >C10-C16	µg/L	60	1100	1200	60 - 140	89
		TRH >C16-C34 (F3)	μg/L	500	1300	1200	60 - 140	110
		TRH >C34-C40 (F4)	μg/L	500	640	600	60 - 140	107
OC's in Soil			ro.				vethod: ME-(AL	
			11.14					
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	
	Monocyclic	Benzene	mg/kg	0.1	2.9	2.9	60 - 140	99
4	Aromatic	Toluene	mg/kg	0.1	2.1	2.9	60 - 140	72
		Ethylbenzene	mg/kg	0.1	2.0	2.9	60 - 140	69
		m/p-xylene	mg/kg	0.2	4.0	5.8	60 - 140	68
-		o-xylene	mg/kg	0.1	1.8	2.9	60 - 140	62
Ş	Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	6.4	5	60 - 140	128
		d4-1,2-dichloroethane (Surrogate)	mg/kg	-	4.5	5	60 - 140	89
		d8-toluene (Surrogate)	mg/kg	-	4.9	5	60 - 140	98
		Bromofluorobenzene (Surrogate)	mg/kg	-	4.8	5	60 - 140	95
OCs in Water							Nethod: ME-(AL	J)-[ENV]A
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recove
LB155745.002 M	Monocyclic	Benzene	μg/L	0.5	51	45.45	60 - 140	113
,	Aromatic	Toluene	µg/L	0.5	51	45.45	60 - 140	112
		Ethylbenzene	μg/L	0.5	51	45.45	60 - 140	113
		m/p-xylene	µg/L	1	100	90.9	60 - 140	113
		o-xylene	μg/L	0.5	51	45.45	60 - 140	113
	Surrogates	Dibromofluoromethane (Surrogate)	μg/L	-	4.5	5	60 - 140	89
	Sunogutos	d4-1,2-dichloroethane (Surrogate)	µg/L	_	4.4	5	60 - 140	88
		d8-toluene (Surrogate)	μg/L		4.4	5	60 - 140	93
		Bromofluorobenzene (Surrogate)		-	4.7	5	60 - 140	97
			µg/L		4.5			
olatile Petroleum Hyd	drocarbons in S						Nethod: ME-(AL	J)-[ENV]/
		Parameter	Units	LOR	Result	Expected	Criteria %	Recove
Sample Number		TRH C6-C10	mg/kg	25	<25	24.65	60 - 140	88
Sample Number LB155626.002		TRH C6-C9	mg/kg	20	20	23.2	60 - 140	87
	Surrogates	Dibramafly aromathana (Cymanata)	ma lun	-	6.4	5	60 - 140	128
LB155626.002	Guilogates	Dibromofluoromethane (Surrogate)	mg/kg		-			
_B155626.002	ounogates	d4-1,2-dichloroethane (Surrogate)	mg/kg	-	4.5	5	60 - 140	89
LB155626.002	ourrogates					5 5		89
_B155626.002		d4-1,2-dichloroethane (Surrogate)	mg/kg		4.5		60 - 140	
B155626.002	VPH F Bands	d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate)	mg/kg mg/kg	-	4.5 4.9	5	60 - 140 60 - 140	89 98 95
B155626.002	VPH F Bands	d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) TRH C6-C10 minus BTEX (F1)	mg/kg mg/kg mg/kg	-	4.5 4.9 4.8	5 5 7.25	60 - 140 60 - 140 60 - 140	89 98 95 124
B155626.002	VPH F Bands	d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) TRH C6-C10 minus BTEX (F1) //ater	mg/kg mg/kg mg/kg mg/kg	-	4.5 4.9 4.8 <25	5 5 7.25	60 - 140 60 - 140 60 - 140 60 - 140	89 98 95 124 J)-[ENV]/
B155626.002	VPH F Bands	d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) TRH C6-C10 minus BTEX (F1) fater Parameter	mg/kg mg/kg mg/kg mg/kg Units	- - 25 LOR	4.5 4.9 4.8 <25 Result	5 5 7.25 Expected	60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 Vethod: ME-(AL Criteria %	89 98 95 124 J)-[ENV]/ Recove
_B155626.002	VPH F Bands	d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) TRH C6-C10 minus BTEX (F1) fater Parameter TRH C6-C10	mg/kg mg/kg mg/kg mg/kg Units μg/L	- - 25 LOR 50	4.5 4.9 4.8 <25 Result 940	5 5 7.25 Expected 946.63	60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 //ethod: ME-(AL Criteria % 60 - 140	89 98 95 124 J)-[ENV]/ Recove 100
.B155626.002	VPH F Bands /drocarbons in W	d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) TRH C6-C10 minus BTEX (F1) fator Parameter TRH C6-C10 TRH C6-C9	mg/kg mg/kg mg/kg mg/kg Units μg/L μg/L	- - 25 LOR 50 40	4.5 4.9 4.8 <25 Result 940 770	5 5 7.25 Expected 946.63 818.71	60 - 140 60 - 140 60 - 140 60 - 140 060 - 140 Method: ME-(AL Criteria % 60 - 140 60 - 140	89 98 95 124 J)-[ENV]/ Recove 100 94
.B155626.002	VPH F Bands	d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) TRH C6-C10 minus BTEX (F1) fater Parameter TRH C6-C10 TRH C6-C9 Dibromofluoromethane (Surrogate)	mg/kg mg/kg mg/kg mg/kg Units μg/L μg/L μg/L	- - 25 LOR 50 40 -	4.5 4.9 4.8 <25 Result 940 770 4.5	5 5 7.25 Expected 946.63 818.71 5	60 - 140 60 - 140 60 - 140 60 - 140 Aethod: ME-(AL Criteria % 60 - 140 60 - 140 60 - 140	89 98 95 124 J)-[ENV]/ Recove 100 94 89
B155626.002	VPH F Bands /drocarbons in W	d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) TRH C6-C10 minus BTEX (F1) fater Parameter TRH C6-C10 TRH C6-C10 Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate)	mg/kg mg/kg mg/kg mg/kg Units μg/L μg/L μg/L μg/L	- - 25 LOR 50 40 -	4.5 4.9 4.8 <25 Result 940 770 4.5 4.4	5 5 7.25 Expected 946.63 818.71 5 5	60 - 140 60 - 140 60 - 140 60 - 140 Acthod: ME-(AL Criteria % 60 - 140 60 - 140 60 - 140 60 - 140	89 98 95 124 J)-[ENV]/ Recove 100 94 89
.B155626.002	VPH F Bands /drocarbons in W	d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) TRH C6-C10 minus BTEX (F1) fater Parameter TRH C6-C10 TRH C6-C9 Dibromofluoromethane (Surrogate)	mg/kg mg/kg mg/kg mg/kg Units μg/L μg/L μg/L	- - 25 LOR 50 40 -	4.5 4.9 4.8 <25 Result 940 770 4.5	5 5 7.25 Expected 946.63 818.71 5	60 - 140 60 - 140 60 - 140 60 - 140 Aethod: ME-(AL Criteria % 60 - 140 60 - 140 60 - 140	89 98 95 124 J)-[ENV]/ Recove 100

MATRIX SPIKES

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Mercury in Soil						Met	hod: ME-(AL	J)-[ENV]AN312
QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE183339.001	LB155630.004	Mercury	mg/kg	0.05	0.20	<0.05	0.2	90

OC Pesticides in Soil

OC Pesticides in)-[ENV]AN420
QC Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recovery?
SE183339.003	LB155627.027		Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	<0.1	-	-
			Alpha BHC	mg/kg	0.1	<0.1	<0.1	-	-
			Lindane	mg/kg	0.1	<0.1	<0.1	-	-
			Heptachlor	mg/kg	0.1	0.2	<0.1	0.2	122
			Aldrin	mg/kg	0.1	0.2	<0.1	0.2	117
			Beta BHC	mg/kg	0.1	<0.1	<0.1	-	-
			Delta BHC	mg/kg	0.1	0.2	<0.1	0.2	116
			Heptachlor epoxide	mg/kg	0.1	<0.1	<0.1	-	-
			o,p'-DDE	mg/kg	0.1	<0.1	<0.1	-	-
			Alpha Endosulfan	mg/kg	0.2	<0.2	<0.2	-	-
			Gamma Chlordane	mg/kg	0.1	<0.1	<0.1	-	-
			Alpha Chlordane	mg/kg	0.1	<0.1	<0.1	-	-
			trans-Nonachlor	mg/kg	0.1	<0.1	<0.1	-	-
			p,p'-DDE	mg/kg	0.1	<0.1	<0.1	-	-
			Dieldrin	mg/kg	0.2	0.2	<0.2	0.2	112
			Endrin	mg/kg	0.2	0.2	<0.2	0.2	105
			o,p'-DDD	mg/kg	0.1	<0.1	<0.1	-	-
			o,p'-DDT	mg/kg	0.1	<0.1	<0.1	-	-
			Beta Endosulfan	mg/kg	0.2	<0.2	<0.2	-	-
			p,p'-DDD	mg/kg	0.1	<0.1	<0.1	-	-
			p,p'-DDT	mg/kg	0.1	0.2	<0.1	0.2	97
			Endosulfan sulphate	mg/kg	0.1	<0.1	<0.1	-	-
			Endrin Aldehyde	mg/kg	0.1	<0.1	<0.1	-	-
			Methoxychlor	mg/kg	0.1	<0.1	<0.1	-	-
			Endrin Ketone	mg/kg	0.1	<0.1	<0.1	-	-
			Isodrin	mg/kg	0.1	<0.1	<0.1	-	-
			Mirex	mg/kg	0.1	<0.1	<0.1	-	-
			Total CLP OC Pesticides	mg/kg	1	1	<1	-	-
		Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0.14	0.18	-	91
P Pesticides in	Soil						Meth	od: ME-(Al)-[ENV]AN42
QC Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recovery
SE183216.001	LB155627.025		Dichlorvos	mg/kg	0.5	2.2	<0.5	2	110
			Dimethoate	mg/kg	0.5	<0.5	<0.5	-	-
			Diazinon (Dimpylate)	mg/kg	0.5	1.8	<0.5	2	92
			Fenitrothion	mg/kg	0.3	<0.2	<0.2	-	- 52
				Пулку	0.2	~U.Z	~v.z	-	

			Methidathion	mg/kg	0.5	<0.5	<0.5	-	-
			Ethion	mg/kg	0.2	2.1	<0.2	2	103
			Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	<0.2	-	-
	_		Total OP Pesticides*	mg/kg	1.7	8.0	<1.7	-	-
		Surrogates	2-fluorobiphenyl (Surrogate)	mg/kg	-	0.5	0.4	-	90
			d14-p-terphenyl (Surrogate)	mg/kg	-	0.5	0.5	-	100
PAH (Polynuclea	ar Aromatic Hydrocarbon	ns) in Soil					Mett	nod: ME-(AL	J)-[ENV]AN420
QC Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE183216.001	LB155627.025		Naphthalene	mg/kg	0.1	4.7	<0.1	4	117
			2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	-	-
			1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	-	-
			Acenaphthylene	mg/kg	0.1	4.5	<0.1	4	112
			Acenaphthene	mg/kg	0.1	4.3	<0.1	4	108
			Fluorene	mg/kg	0.1	<0.1	<0.1	-	-
			Phenanthrene		0.1	4.7	<0.1		117

Malathion

Chlorpyrifos (Chlorpyrifos Ethyl)

Parathion-ethyl (Parathion)

Bromophos Ethyl

<0.2

2.0

<0.2

<0.2

0.2

0.2

0.2

0.2

mg/kg

mg/kg

mg/kg

mg/kg

<0.2

<0.2

<0.2

<0.2

2

-

99

-

MATRIX SPIKES

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

	ar Aromatic Hydrocarb		·						J)-[ENV]AN
QC Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recover
SE183216.001	LB155627.025		Anthracene	mg/kg	0.1	4.7	<0.1	4	118
			Fluoranthene	mg/kg	0.1	4.7	<0.1	4	117
			Pyrene	mg/kg	0.1	4.9	<0.1	4	122
			Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1	-	-
			Chrysene	mg/kg	0.1	<0.1	<0.1	-	-
			Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	<0.1	-	-
			Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1	-	-
			Benzo(a)pyrene	mg/kg	0.1	4.3	<0.1	4	106
			Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1	-	-
			Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	-	-
			Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1	-	-
			Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td>4.3</td><td><0.2</td><td>-</td><td>-</td></lor=0<>	TEQ (mg/kg)	0.2	4.3	<0.2	-	-
			Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td>4.4</td><td><0.3</td><td>-</td><td>-</td></lor=lor<>	TEQ (mg/kg)	0.3	4.4	<0.3	-	-
			Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td>4.3</td><td><0.2</td><td>-</td><td>-</td></lor=lor>	TEQ (mg/kg)	0.2	4.3	<0.2	-	-
			Total PAH (18)	mg/kg	0.8	37	<0.8	-	
		Surrogates	d5-nitrobenzene (Surrogate)	mg/kg	-	0.4	0.4	-	76
		Surrogates			_	0.4	0.4		90
			2-fluorobiphenyl (Surrogate)	mg/kg					
			d14-p-terphenyl (Surrogate)	mg/kg	-	0.5	0.5	-	100
CBs in Soil							Meth	nod: ME-(Al	J)-[ENV]AI
QC Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recove
SE183339.003	LB155627.024		Arochlor 1016	mg/kg	0.2	<0.2	<0.2	-	-
			Arochlor 1221	mg/kg	0.2	<0.2	<0.2	-	-
			Arochlor 1232	mg/kg	0.2	<0.2	<0.2	-	-
			Arochlor 1242	mg/kg	0.2	<0.2	<0.2	-	
			Arochlor 1248	mg/kg	0.2	<0.2	<0.2	-	
						<0.2	<0.2	-	
			Arochlor 1254	mg/kg	0.2				
			Arochlor 1260	mg/kg	0.2	0.5	<0.2	0.4	124
			Arochlor 1262	mg/kg	0.2	<0.2	<0.2	-	-
			Arochlor 1268	mg/kg	0.2	<0.2	<0.2	-	-
			Total PCBs (Arochlors)	mg/kg	1	<1	<1	-	-
		Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0	0	-	107
	In The second state of the second	ete Solide/Mater	als by ICPOES				Method: ME	-(AU)-[ENV	JAN040/AM
otal Recoverab	le Elements in Soll/wa	aste conus/mater							
		aste Colics/Mater	Parameter	Units	LOR	Result			Recove
QC Sample	Sample Number	sie Collos/Mater	Parameter	Units	LOR	Result	Original	Spike	
			Arsenic, As	mg/kg	1	54	Original 10	Spike 50	87
QC Sample	Sample Number		Arsenic, As Cadmium, Cd	mg/kg mg/kg	1 0.3	54 47	Original 10 0.3	Spike 50 50	87 94
QC Sample	Sample Number		Arsenic, As Cadmium, Cd Chromium, Cr	mg/kg mg/kg mg/kg	1 0.3 0.3	54 47 67	Original 10 0.3 22	Spike 50 50 50	87 94 89
QC Sample	Sample Number		Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu	mg/kg mg/kg mg/kg mg/kg	1 0.3 0.3 0.5	54 47 67 66	Original 10 0.3 22 16	Spike 50 50 50 50 50	87 94 89 101
QC Sample	Sample Number		Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni	mg/kg mg/kg mg/kg mg/kg mg/kg	1 0.3 0.3 0.5 0.5	54 47 67 66 56	Original 10 0.3 22 16 9.3	Spike 50 50 50 50 50 50 50 50 50	87 94 89 101 93
QC Sample	Sample Number		Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb	mg/kg mg/kg mg/kg mg/kg	1 0.3 0.3 0.5 0.5 1	54 47 67 66 56 58	Original 10 0.3 22 16 9.3 15	Spike 50 50 50 50 50 50 50 50 50 50 50 50	87 94 89 101 93 86
QC Sample	Sample Number		Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni	mg/kg mg/kg mg/kg mg/kg mg/kg	1 0.3 0.3 0.5 0.5	54 47 67 66 56	Original 10 0.3 22 16 9.3	Spike 50 50 50 50 50 50 50 50 50	87 94 89 101 93
QC Sample SE183339.001	Sample Number		Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	1 0.3 0.3 0.5 0.5 1	54 47 67 66 56 58	Original 10 0.3 22 16 9.3 15 42	Spike 50 50 50 50 50 50 50 50 50 50 50 50	94 89 101 93 86 103
QC Sample SE183339.001 RH (Total Reco	Sample Number LB155629.004		Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	1 0.3 0.5 0.5 1 2	54 47 67 66 56 58 93	Original 10 0.3 22 16 9.3 15 42 Metr	Spike 50 50 50 50 50 50 50 50 50	87 94 89 101 93 86 103 J)-[ENV]AN
QC Sample SE183339.001 RH (Total Reco QC Sample	Sample Number LB155629.004 overable Hydrocarbons Sample Number		Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Parameter	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg Units	1 0.3 0.5 0.5 1 2 LOR	54 47 67 66 56 58 93 Result	Original 10 0.3 22 16 9.3 15 42 Meth Original	Spike 50	87 94 89 101 93 86 103 J)-[ENV]AN Recove
QC Sample SE183339.001 RH (Total Reco QC Sample	Sample Number LB155629.004		Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Parameter TRH C10-C14	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg Units mg/kg	1 0.3 0.5 0.5 1 2 LOR 20	54 47 67 66 56 58 93 Result 47	Original 10 0.3 22 16 9.3 15 42 Meth Original <20	Spike 50 50 50 50 50 50 50 50 50 60 50 50 60 50 80 60 80 80 80 80 80 80 80 80 80 80 80 80 80	87 94 89 101 93 86 103 J)-[ENV]AN Recove 118
QC Sample SE183339.001 RH (Total Reco QC Sample	Sample Number LB155629.004 overable Hydrocarbons Sample Number		Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Parameter TRH C10-C14 TRH C15-C28	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg Units mg/kg mg/kg	1 0.3 0.5 0.5 1 2 LOR 20 45	54 47 67 66 56 58 93 Result 47 <45	Original 10 0.3 22 16 9.3 15 42 Meth Original <20	Spike 50	87 94 89 101 93 86 103 J)-[ENV]A Recove 118 98
QC Sample SE183339.001 RH (Total Reco QC Sample	Sample Number LB155629.004 overable Hydrocarbons Sample Number		Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Parameter TRH C10-C14 TRH C15-C28 TRH C29-C36	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg Units mg/kg mg/kg mg/kg	1 0.3 0.5 0.5 1 2 LOR 20 45	54 47 67 66 56 58 93 Result 47 <45 <45	Original 10 0.3 22 16 9.3 15 42 Mettr Original <20	Spike 50	87 94 89 101 93 86 103 U)-[ENV]AI Recov 118 98 73
QC Sample SE183339.001 RH (Total Reco QC Sample	Sample Number LB155629.004 overable Hydrocarbons Sample Number		Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Parameter TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	1 0.3 0.5 0.5 1 2 LOR 20 45 45 100	54 47 67 66 56 58 93 Result 47 <45 <45 <100	Original 10 0.3 22 16 9.3 15 42 Methods Original <20	Spike 50	87 94 89 101 93 86 103 U)-[ENV]AI Recov 118 98 73 -
QC Sample SE183339.001 RH (Total Reco QC Sample	Sample Number LB155629.004 overable Hydrocarbons Sample Number		Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Parameter TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C36 Total	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	1 0.3 0.5 0.5 1 2 LOR 20 45 45 100 110	54 47 67 66 58 93 Result 47 <45 <45 <100 <110	Original 10 0.3 22 16 9.3 15 42 Methods Original <20	Spike 50	87 94 89 101 93 86 103 U)-[ENV]AI Recov 118 98 73
QC Sample SE183339.001 RH (Total Reco QC Sample	Sample Number LB155629.004 overable Hydrocarbons Sample Number	s) in Soil	Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Parameter TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C36 Total TRH C10-C40 Total (F bands)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	1 0.3 0.5 0.5 1 2 LOR 20 45 45 100 110 210	54 47 67 66 58 93 Result 47 <45 <45 <100 <110 <210	Original 10 0.3 22 16 9.3 15 42 Meth Original <20	Spike 50	87 94 89 101 93 86 103 J)-[ENV]AI Recov 118 98 73 - -
QC Sample SE183339.001 RH (Total Reco QC Sample	Sample Number LB155629.004 overable Hydrocarbons Sample Number		Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Parameter TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C36 Total	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	1 0.3 0.5 0.5 1 2 LOR 20 45 45 100 110	54 47 67 66 58 93 Result 47 <45 <45 <100 <110	Original 10 0.3 22 16 9.3 15 42 Methods Original <20	Spike 50	87 94 89 101 93 86 103 J)-[ENV]AI Recove 118 98 73 - -
QC Sample E183339.001 RH (Total Reco QC Sample	Sample Number LB155629.004 overable Hydrocarbons Sample Number	s) in Soil	Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Parameter TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C36 Total TRH C10-C40 Total (F bands)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	1 0.3 0.5 0.5 1 2 LOR 20 45 45 100 110 210	54 47 67 66 58 93 Result 47 <45 <45 <100 <110 <210	Original 10 0.3 22 16 9.3 15 42 Meth Original <20	Spike 50	87 94 89 101 93 86 103 J)-[ENV]AI Recov 118 98 73 - -
QC Sample E183339.001 RH (Total Reco QC Sample	Sample Number LB155629.004 overable Hydrocarbons Sample Number	s) in Soil	Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Parameter TRH C10-C14 TRH C29-C36 TRH C37-C40 TRH C10-C36 Total TRH C10-C40 Total (F bands) TRH >C10-C16	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	1 0.3 0.5 0.5 1 2 LOR 20 45 45 100 110 210 25	54 47 67 66 58 93 Result 47 <45 <45 <100 <110 <210 42	Original 10 0.3 22 16 9.3 15 42 Original <20	Spike 50	87 94 89 101 93 86 103 J)-[ENV]AI Recov 118 98 73 - - - - - - 105
QC Sample SE183339.001 RH (Total Reco QC Sample	Sample Number LB155629.004 overable Hydrocarbons Sample Number	s) in Soil	Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Parameter TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C36 Total TRH C10-C40 Total (F bands) TRH >C10-C16 TRH >C10-C16- Naphthalene (F2)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	1 0.3 0.5 0.5 1 2 LOR 20 45 45 100 110 210 25 25	54 47 67 66 58 93 Result 47 <45 <45 <100 <110 <210 42 42	Original 10 0.3 22 16 9.3 15 42 Original <20	Spike 50	87 94 89 101 93 86 103 J)-[ENV]AI Recov 118 98 73 - - - - - - 105
QC Sample SE183339.001 RH (Total Reco QC Sample SE183339.002	Sample Number LB155629.004 overable Hydrocarbons Sample Number	s) in Soil	Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Parameter TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C10-C40 TRH C10-C36 Total TRH C10-C36 Total TRH >C10-C16 TRH >C10-C16 TRH >C10-C16 - Naphthalene (F2) TRH >C10-C34 (F3)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	1 0.3 0.5 0.5 1 2 LOR 20 45 45 45 100 110 210 25 25 90	54 47 67 66 58 93 Result 47 <45 <100 <110 <210 42 42 42 <90	Original 10 0.3 22 16 9.3 15 42 Methods Original <20	Spike 50	87 94 89 101 93 86 103 /)-[ENV]Al Recove 118 98 73 - - - - - 105 - - 85 - -
QC Sample SE183339.001 RH (Total Reco QC Sample SE183339.002	Sample Number LB155629.004	s) in Soil	Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Parameter TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C36 Total TRH C10-C16 TRH >C10-C16-C34 (F3) TRH >C34-C40 (F4)	mg/kg mg/kg	1 0.3 0.5 0.5 1 2 LOR 20 45 45 45 100 110 210 25 25 90 120	54 47 67 66 58 93 Result 47 <45 <45 <100 <110 <210 42 42 42 <90 <120	Original 10 0.3 22 16 9.3 15 42 Meth Original <20	Spike 50 50 50 50 50 50 50 50 50 50 40 40 40 40 - - 40 - 40	87 94 89 101 93 86 103 V)-[ENV]AI Recove 118 98 73 - - - - 105 - - 85 - - -
QC Sample SE183339.001 RH (Total Reco QC Sample SE183339.002 C's In Soll QC's In Soll QC Sample	Sample Number LB155629.004	s) in Soil TRH F Bands	Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Parameter TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C10-C36 Total TRH C10-C16 TRH >C10-C16 TRH >C10-C16-C34 (F3) TRH >C10-C16 (F3) TRH >C34-C40 (F4)	mg/kg mg/kg	1 0.3 0.5 0.5 1 2 LOR 20 45 45 45 100 110 210 25 25 90 120 LOR	54 47 67 66 58 93 Result 47 <45 <45 <100 <110 <210 42 42 42 <90 <120 Result	Original 10 0.3 22 16 9.3 15 42 Meth Original <20	Spike 50 40 - 40 - 40 - 40 - 40 - 40 - - 40 - - - - - - - - - - - - - - - - <td>87 94 89 101 93 86 103 J)-[ENV]AI Recove 118 98 73 - - - - 105 - 85 - - - - - - - - - - - - - - - - -</td>	87 94 89 101 93 86 103 J)-[ENV]AI Recove 118 98 73 - - - - 105 - 85 - - - - - - - - - - - - - - - - -
QC Sample SE183339.001 RH (Total Reco QC Sample SE183339.002 C's In Soll QC's In Soll QC Sample	Sample Number LB155629.004	s) in Soil	Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Parameter TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C36 Total TRH C10-C16 TRH >C10-C16-C34 (F3) TRH >C34-C40 (F4)	mg/kg mg/kg	1 0.3 0.5 0.5 1 2 LOR 20 45 45 45 100 110 210 25 25 90 120	54 47 67 66 58 93 Result 47 <45 <45 <100 <110 <210 42 42 42 <90 <120	Original 10 0.3 22 16 9.3 15 42 Meth Original <20	Spike 50 50 50 50 50 50 50 50 50 50 40 40 40 40 - - 40 - 40	87 94 89 101 93 86 103 V)-[ENV]AI Recove 118 98 73 - - - - - - - - - - - - - - - - - -
QC Sample SE183339.001 RH (Total Reco QC Sample SE183339.002 C's In Soll QC's In Soll QC Sample	Sample Number LB155629.004	s) in Soil TRH F Bands	Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Parameter TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C10-C36 Total TRH C10-C16 TRH >C10-C16 TRH >C10-C16-C34 (F3) TRH >C10-C16 (F3) TRH >C34-C40 (F4)	mg/kg mg/kg	1 0.3 0.5 0.5 1 2 LOR 20 45 45 45 100 110 210 25 25 90 120 LOR	54 47 67 66 58 93 Result 47 <45 <45 <100 <110 <210 42 42 42 <90 <120 Result	Original 10 0.3 22 16 9.3 15 42 Meth Original <20	Spike 50 40 - 40 - 40 - 40 - 40 - 40 - - 40 - - - - - - - - - - - - - - - - <td>87 94 89 101 93 86 103 J)-[ENV]AI Recove 118 98 73 - - - - 105 - 85 - - - - - - - - - - - - - - - - -</td>	87 94 89 101 93 86 103 J)-[ENV]AI Recove 118 98 73 - - - - 105 - 85 - - - - - - - - - - - - - - - - -
QC Sample SE183339.001 RH (Total Reco	Sample Number LB155629.004	s) in Soil TRH F Bands Monocyclic	Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Parameter TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C10-C40 TRH C10-C40 Total TRH C10-C40 Total (F bands) TRH >C10-C16 TRH >C10-C16-Naphthalene (F2) TRH >C10-C40 (F4) Parameter	mg/kg mg/kg	1 0.3 0.5 0.5 1 2 LOR 20 45 45 45 100 110 25 25 90 120 LOR 0.1	54 47 67 66 58 93 Result 47 <45 <100 <110 <210 42 42 <90 <120 Result 2.7	Original 10 0.3 22 16 9.3 15 42 Methods Original <20	Spike 50 50 50 50 50 50 50 50 50 50 50 50 50	87 94 89 101 93 86 103 93 Recove 118 98 73 - - - - 105 - - - - 105 - - - - 105 - - - - - - - - - - - - - - - - - - -
QC Sample SE183339.001 RH (Total Reco QC Sample SE183339.002 C's In Soll QC's In Soll QC Sample	Sample Number LB155629.004	s) in Soil TRH F Bands Monocyclic	Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Parameter TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C10-C36 Total TRH C10-C40 Total (F bands) TRH >C10-C16 TRH >C10-C16-Naphthalene (F2) TRH >C10-C16-Naphthalene (F2) TRH >C10-C16-Naphthalene (F2) TRH >C10-C40 (F4) Parameter Benzene Toluene	mg/kg mg/kg	1 0.3 0.5 0.5 1 2 LOR 20 45 45 100 110 25 25 90 120 LOR 0.1 0.1	54 47 67 66 58 93 Result 47 <45 <100 <110 <210 42 42 42 <90 <120 Result 2.7 1.9	Original 10 0.3 22 16 9.3 15 42 Methy Original <20	Spike 50 50 50 50 50 50 50 50 50 50 50 50 50	87 94 89 101 93 86 103 105 Recove 118 98 73 - - - - - - - - - - - - - - - - - -

MATRIX SPIKES

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

QC Sample	Sample Numbe	-	Parameter	Units	LOR	Result	Original	Spike	Recovery
SE183339.001	LB155626.004	Polycyclic	Naphthalene	mg/kg	0.1	<0.1	<0.1	- эріке	Recovery
SE163339.001	LB155626.004	Surrogates	Dibromofluoromethane (Surrogate)	mg/kg		4.1	5.9	-	82
		Surroyates	d4-1,2-dichloroethane (Surrogate)	mg/kg	-	4.1	4.5	-	81
			d8-toluene (Surrogate)	mg/kg	-	4.1	5.4	-	85
			Bromofluorobenzene (Surrogate)	mg/kg		5.6	4.0		112
		Totals	Total Xylenes	mg/kg	0.3	6.1	<0.3		-
		101213	Total BTEX	mg/kg	0.6	13	<0.6	-	_
					0.0	10			
OCs in Water						_		•	J)-[ENV]AN4
QC Sample	Sample Numbe		Parameter	Units	LOR	Result	Original	Spike	Recovery
SE183221.013	LB155745.024	Monocyclic	Benzene	µg/L	0.5	54	<0.5	45.45	118
		Aromatic	Toluene	µg/L	0.5	55	<0.5	45.45	120
			Ethylbenzene	µg/L	0.5	52	<0.5	45.45	115
			m/p-xylene	µg/L	1	95	<1	90.9	105
			o-xylene	µg/L	0.5	48	<0.5	45.45	106
		Polycyclic	Naphthalene	µg/L	0.5	54	<0.5	-	-
		Surrogates	Dibromofluoromethane (Surrogate)	µg/L	-	4.5	4.6	-	90
			d4-1,2-dichloroethane (Surrogate)	µg/L	-	5.2	5.2	-	103
			d8-toluene (Surrogate)	µg/L	-	4.8	4.5	-	96
			Bromofluorobenzene (Surrogate)	µg/L	-	4 7		-	
			Bromonaorobonizono (ourrogato)	P9/L	-	4.7	4.2	-	93
/olatile Petroleu	m Hydrocarbons in §	Soil		μg/L	-	4.7			
/olatile Petroleu QC Sample	m Hydrocarbons in S Sample Numbe		Parameter	Units	LOR	4.7 Result			J)-[ENV]AN4
QC Sample	-						Met	hod: ME-(AL	J)-[ENV]AN4
QC Sample	Sample Numbe		Parameter	Units	LOR	Result	Mett Original	hod: ME-(AL Spike	J)-[ENV]AN4 Recovery
QC Sample	Sample Numbe		Parameter TRH C6-C10	Units mg/kg	LOR 25	Result <25	Mett Original <25	hod: ME-(AL Spike 24.65	J)-[ENV]AN4 Recovery 72
QC Sample	Sample Numbe	r	Parameter TRH C6-C10 TRH C6-C9	Units mg/kg mg/kg	LOR 25 20	Result <25 <20	Met Original <25 <20	hod: ME-(AL Spike 24.65 23.2	J)-[ENV]AN4 Recover 72 73
QC Sample	Sample Numbe	r	Parameter TRH C6-C10 TRH C6-C9 Dibromofluoromethane (Surrogate)	Units mg/kg mg/kg mg/kg	LOR 25 20	Result <25 <20 4.1	Mett Original <25 <20 5.9	hod: ME-(AL Spike 24.65 23.2 -	J)-[ENV]AN4 Recover 72 73 82
QC Sample	Sample Numbe	r	Parameter TRH C6-C10 TRH C6-C9 Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate)	Units mg/kg mg/kg mg/kg mg/kg	LOR 25 20	Result <25 <20 4.1 4.1	Met Original <25 <20 5.9 4.5	hod: ME-(AL Spike 24.65 23.2 -	J)-[ENV]AN4 Recover 72 73 82 81
QC Sample	Sample Numbe	r	Parameter TRH C6-C10 TRH C6-C9 Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate)	Units mg/kg mg/kg mg/kg mg/kg mg/kg	LOR 25 20 - - -	Result <25	Met Original <25 <20 5.9 4.5 5.4	hod: ME-(AL Spike 24.65 23.2 - - -	J)-[ENV]AN4 Recover 72 73 82 81 85
QC Sample	Sample Numbe	Surrogates	Parameter TRH C6-C10 TRH C6-C9 Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate)	Units mg/kg mg/kg mg/kg mg/kg mg/kg	LOR 25 20 - - - -	Result <25	Met Original <25 <20 5.9 4.5 5.4 4.0	hod: ME-(AL Spike 24.65 23.2 - - - - -	J)-[ENV]AN4 Recovery 72 73 82 81 85 112
QC Sample SE183339.001	Sample Numbe LB155626.004	Surrogates VPH F Bands	Parameter TRH C6-C10 TRH C6-C9 Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Benzene (F0)	Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	LOR 25 20 - - - - 0.1	Result <25 <20 4.1 4.1 4.2 5.6 2.7	Meth Original <25	hod: ME-(AL Spike 24.65 23.2 - - - - - 7.25	J)-[ENV]AN4 Recover 72 73 82 81 85 112 - 70
QC Sample SE183339.001 /olatile Petroleu	Sample Numbe LB155626.004 m Hydrocarbons in V	Surrogates VPH F Bands Water	Parameter TRH C6-C10 TRH C6-C9 Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Benzene (F0) TRH C6-C10 minus BTEX (F1)	Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	LOR 25 20 - - - - 0.1 25	Result <25	Meth Original <25	hod: ME-(AL Spike 24.65 23.2 - - - - 7.25 hod: ME-(AL	U)-[ENV]ANA Recover 72 73 82 81 85 112 - 70 70 U)-[ENV]ANA
QC Sample SE183339.001 /olatile Petroleu QC Sample	Sample Numbe LB155626.004 m Hydrocarbons in V Sample Numbe	Surrogates VPH F Bands Water	Parameter TRH C6-C10 TRH C6-C9 Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) Bromofluorobenzene (Surrogate) Benzene (F0) TRH C6-C10 minus BTEX (F1)	Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	LOR 25 20 - - - - 0.1 25 LOR	Result <25	Metil Original <25	hod: ME-(AL Spike 24.65 23.2 - - - - 7.25 hod: ME-(AL Spike	J)-[ENV]AN4 Recover 72 73 82 81 85 112 - 70 J)-[ENV]AN4 Recover
QC Sample SE183339.001 /olatile Petroleu QC Sample	Sample Numbe LB155626.004 m Hydrocarbons in V	Surrogates VPH F Bands Water	Parameter TRH C6-C10 TRH C6-C9 Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) Bromofluorobenzene (Surrogate) Benzene (F0) TRH C6-C10 minus BTEX (F1)	Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg Units µg/L	LOR 25 20 - - - 0.1 25 LOR 50	Result <25	Meth Original <25	hod: ME-(AL Spike 24.65 23.2 - - - - 7.25 hod: ME-(AL Spike 946.63	J)-[ENV]AN4 Recover 72 73 82 81 85 112 - 70 J)-[ENV]AN4 Recover 95
QC Sample SE183339.001 /olatile Petroleu QC Sample	Sample Numbe LB155626.004 m Hydrocarbons in V Sample Numbe	Surrogates VPH F Bands Nater	Parameter TRH C6-C10 TRH C6-C9 Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) Bromofluorobenzene (Surrogate) Benzene (F0) TRH C6-C10 minus BTEX (F1) Parameter TRH C6-C10 TRH C6-C10	Units mg/kg mg/kg	LOR 25 20 - - - - 0.1 25 LOR	Result <25	Meth Original <25	hod: ME-(AL Spike 24.65 23.2 - - - - 7.25 hod: ME-(AL Spike	J)-[ENV]AN4 Recovery 72 73 82 81 85 112 - 70 J)-[ENV]AN4 Recovery 95 91
QC Sample SE183339.001 /olatile Petroleu QC Sample	Sample Numbe LB155626.004 m Hydrocarbons in V Sample Numbe	Surrogates VPH F Bands Water	Parameter TRH C6-C10 TRH C6-C9 Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) Bromofluorobenzene (Surrogate) Benzene (F0) TRH C6-C10 minus BTEX (F1) Parameter TRH C6-C10 TRH C6-C9 Dibromofluoromethane (Surrogate)	Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg units µg/L µg/L	LOR 25 20 - - - 0.1 25 LOR 50 40	Result <25	Meth Original <25	hod: ME-(AL Spike 24.65 23.2 - - - 7.25 hod: ME-(AL Spike 946.63 818.71	J)-[ENV]AN4 Recover 72 73 82 81 85 112 - 70 J)-[ENV]AN4 Recover 95 91 90
QC Sample SE183339.001 [/] olatile Petroleu QC Sample	Sample Numbe LB155626.004 m Hydrocarbons in V Sample Numbe	Surrogates VPH F Bands Nater	Parameter TRH C6-C10 TRH C6-C9 Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) Bromofluorobenzene (Surrogate) Benzene (F0) TRH C6-C10 minus BTEX (F1) Parameter TRH C6-C10 TRH C6-C9 Dibromofluoromethane (Surrogate)	Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg units µg/L µg/L µg/L µg/L	LOR 25 20 - - - 0.1 25 LOR 50 40 -	Result <25	Meth Original <25	hod: ME-(AL Spike 24.65 23.2 - - - - 7.25 hod: ME-(AL Spike 946.63 818.71 - -	J)-[ENV]AN4 Recover 72 73 82 81 85 112 - 70 J)-[ENV]AN4 Recover 95 91 90 103
QC Sample SE183339.001 /olatile Petroleu QC Sample	Sample Numbe LB155626.004 m Hydrocarbons in V Sample Numbe	Surrogates VPH F Bands Nater	Parameter TRH C6-C10 TRH C6-C9 Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) Bromofluorobenzene (Surrogate) Benzene (F0) TRH C6-C10 TRH C6-C10 TRH C6-C10 TRH C6-C9 Dibromofluoromethane (Surrogate)	Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg Units µg/L µg/L µg/L µg/L µg/L	LOR 25 20 - - - 0.1 25 25 - 0.1 25 50 40 - -	Result <25	Meth Original <25	hod: ME-(AL Spike 24.65 23.2 - - - - 7.25 hod: ME-(AL Spike 946.63 818.71 - -	J)-[ENV]AN4 Recover 72 73 82 81 85 112 - 70 J)-[ENV]AN4 Recover 95 91 90 103 96
QC Sample SE183339.001	Sample Numbe LB155626.004 m Hydrocarbons in V Sample Numbe	Surrogates VPH F Bands Nater	Parameter TRH C6-C10 TRH C6-C9 Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) Bromofluorobenzene (Surrogate) Benzene (F0) TRH C6-C10 minus BTEX (F1) Parameter TRH C6-C10 TRH C6-C9 Dibromofluoromethane (Surrogate)	Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg units µg/L µg/L µg/L µg/L	LOR 25 20 - - - 0.1 25 LOR 50 40 -	Result <25	Meth Original <25	hod: ME-(AL Spike 24.65 23.2 - - - - 7.25 hod: ME-(AL Spike 946.63 818.71 - -	J)-[ENV]AN4 Recovery 72 73 82 81 85 112 - 70 J)-[ENV]AN4 Recovery 95 91 90 103

Matrix spike duplicates are calculated as Relative Percent Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The original result is the analyte concentration of the matrix spike. The Duplicate result is the analyte concentration of the matrix spike duplicate.

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

No matrix spike duplicates were required for this job.

Samples analysed as received.

Solid samples expressed on a dry weight basis.

QC criteria are subject to internal review according to the SGS QA/QC plan and may be provided on request or alternatively can be found here: http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical Documents/MP-AU-ENV-QU-022 QA QC Plan.pdf

- * NATA accreditation does not cover the performance of this service .
- ** Indicative data, theoretical holding time exceeded.
- Sample not analysed for this analyte.
- IS Insufficient sample for analysis.
- LNR Sample listed, but not received.
- LOR Limit of reporting.
- QFH QC result is above the upper tolerance.
- QFL QC result is below the lower tolerance.
- ① At least 2 of 3 surrogates are within acceptance criteria.
- ② RPD failed acceptance criteria due to sample heterogeneity.
- ③ Results less than 5 times LOR preclude acceptance criteria for RPD.
- ④ Recovery failed acceptance criteria due to matrix interference.
- Recovery failed acceptance criteria due to the presence of significant concentration of analyte (i.e. the concentration of analyte exceeds the spike level).
- 6 LOR was raised due to sample matrix interference.
- O LOR was raised due to dilution of significantly high concentration of analyte in sample.
- Image:
- Recovery failed acceptance criteria due to sample heterogeneity.
- [®] LOR was raised due to high conductivity of the sample (required dilution).
- t Refer to Analytical Report comments for further information.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sqs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This test report shall not be reproduced, except in full.

Ou	tputs	
Land use	Zn soil-spe	ecific EILs
	(mg contaminan	t/kg dry soil)
	Fresh	Aged
National parks and areas of high conservation value	#NUM!	80
Urban residential and open public spaces	#NUM!	95
Commercial and industrial	#NUM!	100

Ou	tputs	
Land use	Ni soil-sp	ecific EILs
	(mg contaminar	nt/kg dry soil)
	Fresh	Aged
National parks and areas of high conservation value	#NUM!	5
Urban residential and open public spaces	#NUM!	5
Commercial and industrial	#NUM!	5

Ou	tputs	
Land use	Cu soil-sp	ecific EILs
	(mg contaminar	nt/kg dry soil)
	Fresh	Aged
National parks and areas of high conservation value	#NUM!	20
Urban residential and open public spaces	#NUM!	30
Commercial and industrial	#NUM!	35

Inputs
Select contaminant from list below
Cr_III
Below needed to calculate fresh and
aged ACLs
Enter % clay (values from 0 to 100%)
15
Below needed to calculate fresh and
aged ABCs
Measured background concentration
(mg/kg). Leave blank if no measured
value
or for fresh ABCs only
Enter iron content (aqua regia
method) (values from 0 to 50%) to
obtain estimate of background
or for aged ABCs only
Enter State (or closest State)
Enter state (or closest state)
NSW
Enter traffic volume (high or low)
low
10 10

Ou	tputs	
Land use	Cr III soil-s	pecific EILs
	(mg contaminar	nt/kg dry soil)
	Fresh	Aged
National parks and areas of high conservation value	#NUM!	150
Urban residential and open public spaces	#NUM!	460
Commercial and industrial	#NUM!	770

	ES EPA8100	TRH				BTEX						трн				CR	C Care	TPH Fr	actions												PAH	
	otal PAH (NEPM/WHO 16)	IRH C37-C40	Benzene	foluene	Ethylbenzene	Kylene (m & p)	kylene (o)	Kylene Total	fotal BTEX	ce - c9	C10 - C14	C15 - C28	36	+C10 - C36 (Sum of total)	017-07	C10-C16	016-034	C34-C40	C10 - C40 (Sum of total)	F1: C6-C10 less BTEX	F2: >C10-C16 less Naphthalene	3enzo(b+j)flu oranthene	I-Methylnaphthalene	2-methyin aphthalene	Acenaphthene	Acena phthyle ne	Anthracene	3enz(a)anthracene	3enzo(a)pyrene	Benzo(g,h,i) perylene	3enzo(k)fluoranthene	Chrysene
	mg/kg		mg/kg	mg/kg	mg/kg	mg/kg							mg/kg mg																			
EQL	0.8	100	0.1	0.1	0.1	0.2	0.1	0.3	0.6	20	20	45	45 1					120	210	25	25	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
CRCCARE 2011 Soil HSL for Direct Contact, HSL-A Residential 0-1m			100	14000	4500			12000						44	00 3	300 4	500	6300														
NEPM 2013 EIL UR/POS, low pH, CEC, clay content - aged 0-2m																																
NEPM 2013 Sch B1 Table 7 Asbestos HSLs																																
NEPM 2013 ESL UR/POS, Coarse Soil 0-2m			50	85	70			105			120				1	120 3	00	2800		180									0.7			
NEPM 2013 ESL UR/POS, Fine Soil 0-2m			65	105	125			45			120				1	120 1	300	5600		180									0.7			
NEPM 2013 HIL, Residential A																																
NEPM 2013 Soil HSL Residential A&B, for Vapour Intrusion, Clay 0-1m			0.7	480	NL			110												50	280											
NEPM 2013 Soil HSL Residential A&B, for Vapour Intrusion, Sand 0-1m			0.5	160	55			40												45	110											
NEPM 2013 Management Limits, C/I, Coarse Soil										700	1000			7	00 1	000 3	500 :	10000														
NEPM 2013 Management Limits, C/I, Fine Soil										800	1000			8	00 1	000 5	000 :	10000														

Field_ID		Jampie_Deptil_Nange	Sampled_Date_mile_Watrix_Description																																
TP101 0.1	TP101 0.1	0.09-0.11	24/08/2018	<0.8	<100	<0.1	<0.1	<0.1	<0.2	< 0.1	< 0.3	<0.6	<20	<20	<45	<45	<110	<25	<25	<90	<120	<210	<25	<25	<0.1	<0.1	<0.1	<0.1	< 0.1	<0.1	<0.1	< 0.1	<0.1	<0.1	<0.1
TP102 0.1	TP102 0.1	0.09-0.11	24/08/2018	<0.8	<100	<0.1	<0.1	<0.1	<0.2	<0.1	< 0.3	<0.6	<20	<20	<45	<45	<110	<25	<25	<90	<120	<210	<25	<25	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
TP103 0.1	TP103 0.1	0.09-0.11	24/08/2018	<0.8	<100	<0.1	<0.1	<0.1	<0.2	<0.1	<0.3	<0.6	<20	<20	<45	<45	<110	<25	<25	<90	<120	<210	<25	<25	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.1	<0.1	<0.1	<0.1
TP104 0.1	TP104 0.1	0.09-0.11	24/08/2018	<0.8	<100	<0.1	<0.1	<0.1	<0.2	<0.1	<0.3	<0.6	<20	<20	<45	<45	<110	<25	<25	<90	<120	<210	<25	<25	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.1	<0.1	<0.1	<0.1
TP105 0.1	TP105 0.1	0.09-0.11	24/08/2018	<0.8	<100	<0.1	<0.1	<0.1	<0.2	<0.1	< 0.3	<0.6	<20	<20	<45	<45	<110	<25	<25	<90	<120	<210	<25	<25	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
TP106 0.1	TP106 0.1	0.09-0.11	24/08/2018	<0.8	<100	<0.1	<0.1	<0.1	<0.2	<0.1	<0.3	<0.6	<20	<20	<45	<45	<110	<25	<25	<90	<120	<210	<25	<25	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.1	<0.1	<0.1	<0.1
TP107 0.25	TP107 0.25	0.2-0.3	24/08/2018	<0.8	<100	<0.1	<0.1	<0.1	<0.2	<0.1	<0.3	<0.6	<20	<20	<45	<45	<110	<25	<25	<90	<120	<210	<25	<25	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.1	<0.1	<0.1	<0.1
TP108 0.1	TP108 0.1	0.09-0.11	24/08/2018	<0.8	<100	<0.1	<0.1	<0.1	<0.2	<0.1	< 0.3	<0.6	<20	<20	<45	<45	<110	<25	<25	<90	<120	<210	<25	<25	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
TP109 0.1	TP109 0.1	0.09-0.11	24/08/2018	<0.8	<100	<0.1	<0.1	<0.1	<0.2	< 0.1	< 0.3	<0.6	<20	<20	<45	<45	<110	<25	<25	<90	<120	<210	<25	<25	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
TP110 0.1	TP110 0.1	0.09-0.11	24/08/2018	<0.8	<100	<0.1	<0.1	<0.1	<0.2	<0.1	<0.3	<0.6	<20	<20	<45	<45	<110	<25	<25	<90	<120	<210	<25	<25	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.1	<0.1	<0.1	<0.1
TP201 0.1	TP201 0.1	0.09-0.11	24/08/2018	<0.8	<100	<0.1	<0.1	<0.1	<0.2	<0.1	<0.3	<0.6	<20	<20	<45	<45	<110	<25	<25	<90	<120	<210	<25	<25	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.1	<0.1	<0.1	<0.1
TP202 0.1	TP202 0.1	0.09-0.11	24/08/2018	<0.8	<100	<0.1	<0.1	<0.1	<0.2	< 0.1	< 0.3	<0.6	<20	<20	<45	<45	<110	<25	<25	<90	<120	<210	<25	<25	<0.1	<0.1	<0.1	<0.1	< 0.1	< 0.1	<0.1	< 0.1	<0.1	<0.1	<0.1
TP203 0.4-0.5	TP203 0.4-0.5	0.4-0.5	24/08/2018	<0.8	<100	<0.1	<0.1	<0.1	<0.2	< 0.1	< 0.3	<0.6	<20	<20	<45	<45	<110	<25	<25	<90	<120	<210	<25	<25	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
TP204 0.1	TP204 0.1	0.09-0.11	24/08/2018	<0.8	<100	<0.1	<0.1	<0.1	<0.2	<0.1	<0.3	<0.6	<20	<20	<45	<45	<110	<25	<25	<90	<120	<210	<25	<25	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.1	<0.1	<0.1	<0.1
TP205 0.1	TP205 0.1	0.09-0.11	24/08/2018	<0.8	<100	<0.1	<0.1	<0.1	<0.2	<0.1	<0.3	<0.6	<20	<20	<45	<45	<110	<25	<25	<90	<120	<210	<25	<25	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1

Statistical Summary																															
Number of Results	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15
Number of Detects	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Minimum Concentration	<0.8	<100	<0.1	<0.1	<0.1	<0.2	< 0.1	< 0.3	<0.6	<20	<20	<45	<45	<110	<25	<25	<90	<120	<210	<25	<25	<0.1	<0.1	< 0.1	<0.1	< 0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Minimum Detect	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND						
Maximum Concentration	<0.8	<100	<0.1	<0.1	<0.1	<0.2	<0.1	<0.3	<0.6	<20	<20	<45	<45	<110	<25	<25	<90	<120	<210	<25	<25	<0.1	<0.1	<0.1	< 0.1	< 0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Maximum Detect	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND						
Average Concentration	0.4	50	0.05	0.05	0.05	0.1	0.05	0.15	0.3	10	10	23	23	55	13	13	45	60	105	13	13	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
Median Concentration	0.4	50	0.05	0.05	0.05	0.1	0.05	0.15	0.3	10	10	22.5	22.5	55	12.5	12.5	45	60	105	12.5	12.5	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
Standard Deviation	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Number of Guideline Exceedances	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Number of Guideline Exceedances(Detects Only)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

															M	etals									Inorganics						
	Dibenz(a,h)anthracene	Fluoranthene	Fluorene	Indeno(1,2,3-c,d)pyrene	Naphthalene	PAHs (Sum of total)	Dhenanthrene	Decore		Arsenic	Cad mium	Calcium	Chromium (III+VI)	Copper	Lead	Magnesium	Mercury	Nickel	Potassium	Sodium	Zinc	Exchangeable Calcium	Exchangeable Magnesium	Exchangeable Potassium	Exchangeable Sodium	Exchangeable Sodium Percent	CEC	Moisture	pH (CaCl2)	2,4-DDT	4,4-DDE
										g/kg		mg/kg			mg/kg				mg/kg		mg/kg			meq/100g							
EQL	0.1	0.1	0.1	0.1	0.1		0.	1 0	.1	1	0.3	2	0.3	0.5	1	2	0.05	0.5	2	2	2	0.01	0.02	0.01	0.01	0.1	0.02	0.5	0.1	0.1	0.1
CRCCARE 2011 Soil HSL for Direct Contact, HSL-A Residential 0-1m					140																										
NEPM 2013 EIL UR/POS, low pH, CEC, clay content - aged 0-2m					170				1	100			460	30	1100			5			95										
NEPM 2013 Sch B1 Table 7 Asbestos HSLs																															
NEPM 2013 ESL UR/POS, Coarse Soil 0-2m																															
NEPM 2013 ESL UR/POS, Fine Soil 0-2m																															
NEPM 2013 HIL, Residential A						300)		1	100	20			6000	300		40	400			7400										
NEPM 2013 Soil HSL Residential A&B, for Vapour Intrusion, Clay 0-1m					5																										
NEPM 2013 Soil HSL Residential A&B, for Vapour Intrusion, Sand 0-1m					3																										
NEPM 2013 Management Limits, C/I, Coarse Soil																															
NEPM 2013 Management Limits, C/I, Fine Soil																															

TP101 0.1	TP101 0.1	0.09-0.11	24/08/2018	<0.1	<0.1	<0.1	< 0.1	<0.1	<0.8	<0.1	<0.1	<1	<0.3	-	2.7	<0.5	2	-	< 0.05	<0.5	-	-	<2		-		-	-	-	5.8	-	<0.1	<0.1
TP102 0.1	TP102 0.1	0.09-0.11	24/08/2018	<0.1	<0.1	<0.1	<0.1	<0.1	<0.8	<0.1	<0.1	1	< 0.3	-	1.3	<0.5	2	-	< 0.05	<0.5	-	-	2.4		-	-	-	-		7.7	-	<0.1	<0.1
TP103 0.1	TP103 0.1	0.09-0.11	24/08/2018	<0.1	<0.1	<0.1	<0.1	<0.1	<0.8	<0.1	<0.1	2	<0.3	68	3	< 0.5	3	24	< 0.05	<0.5	23	8	3	0.34	0.19	0.06	0.04	5.7	0.63	6.5	4.1	< 0.1	<0.1
TP104 0.1	TP104 0.1	0.09-0.11	24/08/2018	<0.1	<0.1	<0.1	<0.1	<0.1	<0.8	<0.1	<0.1	2	<0.3	-	3.5	< 0.5	2	-	< 0.05	<0.5	-	-	2.5		-		-	-	-	6.6	-	< 0.1	<0.1
TP105 0.1	TP105 0.1	0.09-0.11	24/08/2018	<0.1	<0.1	<0.1	< 0.1	<0.1	<0.8	<0.1	<0.1	3	<0.3	-	1.5	<0.5	2	-	< 0.05	<0.5	-	-	<2		-		-	-	-	9.6	-	<0.1	<0.1
TP106 0.1	TP106 0.1	0.09-0.11	24/08/2018	<0.1	<0.1	<0.1	<0.1	<0.1	<0.8	<0.1	<0.1	1	<0.3	-	0.9	<0.5	1	-	< 0.05	<0.5	-	-	4.3		-		-	-	-	8	-	< 0.1	<0.1
TP107 0.25	TP107 0.25	0.2-0.3	24/08/2018	<0.1	<0.1	<0.1	<0.1	<0.1	<0.8	<0.1	<0.1	<1	<0.3	-	2.3	<0.5	<1	-	< 0.05	<0.5	-	-	<2		-		-	-	-	13	-	< 0.1	<0.1
TP108 0.1	TP108 0.1	0.09-0.11	24/08/2018	<0.1	<0.1	<0.1	< 0.1	<0.1	<0.8	<0.1	<0.1	<1	<0.3	-	0.5	0.8	<1	-	< 0.05	<0.5	-	-	2.6		-		-	-	-	18	-	<0.1	<0.1
TP109 0.1	TP109 0.1	0.09-0.11	24/08/2018	<0.1	<0.1	<0.1	<0.1	<0.1	<0.8	<0.1	<0.1	1	< 0.3	-	1.4	<0.5	1	-	< 0.05	<0.5	-	-	2.5		-	-	-	-	-	9.2		<0.1	<0.1
TP110 0.1	TP110 0.1	0.09-0.11	24/08/2018	<0.1	<0.1	<0.1	<0.1	<0.1	<0.8	<0.1	<0.1	2	<0.3	-	1	0.5	2	-	< 0.05	<0.5	-	-	3.2		-		-	-	-	13	-	< 0.1	<0.1
TP201 0.1	TP201 0.1	0.09-0.11	24/08/2018	<0.1	<0.1	<0.1	<0.1	<0.1	<0.8	<0.1	<0.1	3	<0.3	-	2.4	3.1	7	-	< 0.05	1.2	-	-	69		-		-	-	-	7.8	-	< 0.1	<0.1
TP202 0.1	TP202 0.1	0.09-0.11	24/08/2018	<0.1	<0.1	<0.1	< 0.1	<0.1	<0.8	<0.1	<0.1	4	<0.3	-	3.4	2.4	9	-	< 0.05	<0.5	-	-	11		-		-	-	-	12	-	<0.1	<0.1
TP203 0.4-0.5	TP203 0.4-0.5	0.4-0.5	24/08/2018	<0.1	<0.1	<0.1	<0.1	<0.1	<0.8	<0.1	<0.1	5	0.4	-	4.1	9.8	16	-	< 0.05	1.1	-	-	150		-	-	-	-		11	-	<0.1	<0.1
TP204 0.1	TP204 0.1	0.09-0.11	24/08/2018	<0.1	<0.1	<0.1	<0.1	<0.1	<0.8	<0.1	<0.1	3	<0.3	-	3.1	6.2	8	-	< 0.05	1.1	-	-	25		-		-	-	-	13	-	< 0.1	<0.1
TP205 0.1	TP205 0.1	0.09-0.11	24/08/2018	<0.1	<0.1	<0.1	< 0.1	<0.1	<0.8	<0.1	<0.1	2	<0.3	-	5.9	5.8	8	-	< 0.05	1.8	-	-	58		-		-	-	-	17	-	<0.1	<0.1

Number of Results	15	15	15	15	15	15	15	15	15	15	1	15	15	15	1	15	15	1	1	15	1	1	1	1	1	1	15	1	15	1
Number of Detects	0	0	0	0	0	0	0	0	12	1	1	15	7	13	1	0	4	1	1	12	1	1	1	1	1	1	15	1	0	(
Minimum Concentration	<0.1	<0.1	<0.1	< 0.1	<0.1	<0.8	< 0.1	<0.1	<1	< 0.3	68	0.5	< 0.5	<1	24	< 0.05	<0.5	23	8	<2	0.34	0.19	0.06	0.04	5.7	0.63	5.8	4.1	<0.1	<0
Minimum Detect	ND	ND	ND	ND	ND	ND	ND	ND	1	0.4	68	0.5	0.5	1	24	ND	1.1	23	8	2.4	0.34	0.19	0.06	0.04	5.7	0.63	5.8	4.1	ND	N
Maximum Concentration	<0.1	<0.1	<0.1	<0.1	<0.1	<0.8	<0.1	<0.1	5	0.4	68	5.9	9.8	16	24	< 0.05	1.8	23	8	150	0.34	0.19	0.06	0.04	5.7	0.63	18	4.1	<0.1	<0
Maximum Detect	ND	ND	ND	ND	ND	ND	ND	ND	5	0.4	68	5.9	9.8	16	24	ND	1.8	23	8	150	0.34	0.19	0.06	0.04	5.7	0.63	18	4.1	ND	N
Average Concentration	0.05	0.05	0.05	0.05	0.05	0.4	0.05	0.05	2	0.17		2.5	2	4.3		0.025	0.53			22							11		0.05	0.0
Median Concentration	0.05	0.05	0.05	0.05	0.05	0.4	0.05	0.05	2	0.15	68	2.4	0.25	2	24	0.025	0.25	23	8	3	0.34	0.19	0.06	0.04	5.7	0.63	9.6	4.1	0.05	0.0
Standard Deviation	0	0	0	0	0	0	0	0	1.4	0.065		1.4	3	4.4		0	0.51			41							3.8		0	(
Number of Guideline Exceedances	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	(
Number of Guideline Exceedances(Detects Only)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	(

			cis)	ordane							ohate						de	e					_								
a-BHC	Aldrin	b-BHC	Chlordane (gamma-Chlo	d-BHC	DDD	DDT	Dieldrin	End osulfan I	End osulfan II	End osulfan sul	Endrin	Endrin aldehyde	Endrin ketone	g-BHC (Lindane)	Heptachlor	Heptachlor epoxi	Hexachlorobenze	Methoxychlor	o,p-DDD	o,p'-DDE	trans-Nonachlor	Azinophos methy	Brom ophos-ethyl	Chlorpyrifos	Diazinon	Dichlowos	Dimethoate	Ethion	Fenitrothion	Malathion
mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.2	0.2	0.2	0.1	0.2	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.2	0.2	0.2	0.5	0.5	0.5	0.2	0.2	0.2
							180																								

	mg/kg	mg/kg	g mg/kg	mg/kg	mg/k	g mg/kg	g mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	g mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	g mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg r	mg/kg
EQL	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.2	0.2	0.2	0.1	0.2	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.2	0.2	0.2	0.5	0.5	0.5	0.2	0.2	0.2	0.5
CRCCARE 2011 Soil HSL for Direct Contact, HSL-A Residential 0-1m																																	
NEPM 2013 EIL UR/POS, low pH, CEC, clay content - aged 0-2m								180																									
NEPM 2013 Sch B1 Table 7 Asbestos HSLs																																	
NEPM 2013 ESL UR/POS, Coarse Soil 0-2m																																	
NEPM 2013 ESL UR/POS, Fine Soil 0-2m																																	
NEPM 2013 HIL, Residential A													10				6		10	300						160							
NEPM 2013 Soil HSL Residential A&B, for Vapour Intrusion, Clay 0-1m																																	
NEPM 2013 Soil HSL Residential A&B, for Vapour Intrusion, Sand 0-1m																																	
NEPM 2013 Management Limits, C/I, Coarse Soil																																	
NEPM 2013 Management Limits, C/I, Fine Soil																																	

Field_ID	Location_Code	Sample_Depth_Range	Sampled_Date_Time	Watrix_Description																																	
TP101 0.1	TP101 0.1	0.09-0.11	24/08/2018		<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.2	<0.2	<0.2	<0.1	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.2	<0.2	<0.2	<0.5	<0.5	<0.5	<0.2	<0.2	<0.2	<0.5
TP102 0.1	TP102 0.1	0.09-0.11	24/08/2018		<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.2	<0.2	<0.2	<0.1	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.2	<0.2	<0.2	<0.5	<0.5	<0.5	<0.2	<0.2	<0.2	<0.5
TP103 0.1	TP103 0.1	0.09-0.11	24/08/2018		<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.2	<0.2	<0.2	<0.1	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.2	<0.2	<0.2	< 0.5	< 0.5	<0.5	<0.2	<0.2	<0.2	<0.5
TP104 0.1	TP104 0.1	0.09-0.11	24/08/2018		<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.2	<0.2	<0.2	<0.1	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.2	<0.2	<0.2	<0.5	<0.5	<0.5	<0.2	<0.2	<0.2	<0.5
TP105 0.1	TP105 0.1	0.09-0.11	24/08/2018		<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.2	<0.2	<0.2	<0.1	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.2	<0.2	<0.2	<0.5	<0.5	<0.5	<0.2	<0.2	<0.2	<0.5
TP106 0.1	TP106 0.1	0.09-0.11	24/08/2018		<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.2	<0.2	<0.2	<0.1	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.2	<0.2	<0.2	< 0.5	< 0.5	<0.5	<0.2	<0.2	<0.2	<0.5
TP107 0.25	TP107 0.25	0.2-0.3	24/08/2018		<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.2	<0.2	<0.2	<0.1	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.2	<0.2	<0.2	<0.5	<0.5	<0.5	<0.2	<0.2	<0.2	<0.5
TP108 0.1	TP108 0.1	0.09-0.11	24/08/2018		<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.2	<0.2	<0.2	<0.1	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.2	<0.2	<0.2	<0.5	<0.5	<0.5	<0.2	<0.2	<0.2	<0.5
TP109 0.1	TP109 0.1	0.09-0.11	24/08/2018		<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.2	<0.2	<0.2	<0.1	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.2	<0.2	<0.2	<0.5	<0.5	<0.5	<0.2	<0.2	<0.2	<0.5
TP110 0.1	TP110 0.1	0.09-0.11	24/08/2018		<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.2	<0.2	<0.2	<0.1	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.2	<0.2	<0.2	< 0.5	< 0.5	<0.5	<0.2	<0.2	<0.2	<0.5
TP201 0.1	TP201 0.1	0.09-0.11	24/08/2018		<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.2	<0.2	<0.2	<0.1	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.2	<0.2	<0.2	<0.5	<0.5	<0.5	<0.2	<0.2	<0.2	<0.5
TP202 0.1	TP202 0.1	0.09-0.11	24/08/2018		<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.2	<0.2	<0.2	<0.1	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.1	<0.2	<0.2	<0.2	<0.5	<0.5	<0.5	<0.2	<0.2	<0.2	<0.5
TP203 0.4-0.5	TP203 0.4-0.5	0.4-0.5	24/08/2018		<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.2	<0.2	<0.2	<0.1	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.2	<0.2	<0.2	<0.5	<0.5	<0.5	<0.2	<0.2	<0.2	<0.5
TP204 0.1	TP204 0.1	0.09-0.11	24/08/2018		<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.2	<0.2	<0.2	<0.1	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.2	<0.2	<0.2	<0.5	<0.5	<0.5	<0.2	<0.2	<0.2	<0.5
TP205 0.1	TP205 0.1	0.09-0.11	24/08/2018		<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.2	<0.2	<0.2	<0.1	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.2	<0.2	<0.2	<0.5	<0.5	<0.5	<0.2	<0.2	<0.2	<0.5

Statistical Summary																																	
Number of Results	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15
Number of Detects	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Minimum Concentration	<0.1	<0.1	<0.1	< 0.1	<0.1	< 0.1	<0.1	<0.1	<0.2	<0.2	<0.2	<0.1	<0.2	<0.1	<0.1	< 0.1	<0.1	<0.1	<0.1	< 0.1	<0.1	<0.1	<0.1	<0.2	<0.2	<0.2	< 0.5	<0.5	< 0.5	<0.2	<0.2	<0.2	<0.5
Minimum Detect	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Maximum Concentration	<0.1	< 0.1	<0.1	< 0.1	<0.1	< 0.1	<0.1	<0.1	<0.2	<0.2	<0.2	< 0.1	<0.2	<0.1	<0.1	< 0.1	< 0.1	<0.1	<0.1	< 0.1	<0.1	< 0.1	<0.1	<0.2	<0.2	<0.2	< 0.5	<0.5	< 0.5	<0.2	<0.2	<0.2	<0.5
Maximum Detect	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Average Concentration	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.1	0.1	0.1	0.05	0.1	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.1	0.1	0.1	0.25	0.25	0.25	0.1	0.1	0.1	0.25
Median Concentration	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.1	0.1	0.1	0.05	0.1	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.1	0.1	0.1	0.25	0.25	0.25	0.1	0.1	0.1	0.25
Standard Deviation	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Number of Guideline Exceedances	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Number of Guideline Exceedances(Detects Only)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

	F	Pesticide	es	Other				Polyc	hlorina	ted Biph	enyls			
	Isodrin	Mirex	Parathion	Estimated Fibres	Arochlor 1016	Arochlor 1221	Arochlor 1232	Arochlor 1242	Arochlor 1248	Arochlor 1254	Arochlor 1260	Arochlor 1268	Arodor 1262	PCBs (Sum of total)
				mg/kg										mg/k
EQL	0.1	0.1	0.2	100	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	1
CRCCARE 2011 Soil HSL for Direct Contact, HSL-A Residential 0-1m														
NEPM 2013 EIL UR/POS, low pH, CEC, clay content - aged 0-2m														
NEPM 2013 Sch B1 Table 7 Asbestos HSLs														
NEPM 2013 ESL UR/POS, Coarse Soil 0-2m														
NEPM 2013 ESL UR/POS, Fine Soil 0-2m														
NEPM 2013 HIL, Residential A		10												1
NEPM 2013 Soil HSL Residential A&B, for Vapour Intrusion, Clay 0-1m														
NEPM 2013 Soil HSL Residential A&B, for Vapour Intrusion, Sand 0-1m														
NEPM 2013 Management Limits, C/I, Coarse Soil														
NEPM 2013 Management Limits, C/I, Fine Soil														

TP101 0.1	TP101 0.1	0.09-0.11	24/08/2018	<0.1	<0.1	<0.2	<100	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<1
TP102 0.1	TP102 0.1	0.09-0.11	24/08/2018	<0.1	<0.1	<0.2	-	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<1
TP103 0.1	TP103 0.1	0.09-0.11	24/08/2018	<0.1	<0.1	<0.2	-	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<1
TP104 0.1	TP104 0.1	0.09-0.11	24/08/2018	<0.1	<0.1	<0.2	-	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<1
TP105 0.1	TP105 0.1	0.09-0.11	24/08/2018	<0.1	<0.1	<0.2	-	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<1
TP106 0.1	TP106 0.1	0.09-0.11	24/08/2018	<0.1	<0.1	<0.2	-	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<1
TP107 0.25	TP107 0.25	0.2-0.3	24/08/2018	<0.1	<0.1	<0.2	-	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<1
TP108 0.1	TP108 0.1	0.09-0.11	24/08/2018	<0.1	<0.1	<0.2	-	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<1
TP109 0.1	TP109 0.1	0.09-0.11	24/08/2018	<0.1	<0.1	<0.2	<100	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<1
TP110 0.1	TP110 0.1	0.09-0.11	24/08/2018	<0.1	<0.1	<0.2	-	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<1
TP201 0.1	TP201 0.1	0.09-0.11	24/08/2018	<0.1	<0.1	<0.2	<100	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<1
TP202 0.1	TP202 0.1	0.09-0.11	24/08/2018	<0.1	<0.1	<0.2	<100	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<1
TP203 0.4-0.5	TP203 0.4-0.5	0.4-0.5	24/08/2018	<0.1	<0.1	<0.2	<100	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<1
TP204 0.1	TP204 0.1	0.09-0.11	24/08/2018	<0.1	<0.1	<0.2	<100	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<1
TP205 0.1	TP205 0.1	0.09-0.11	24/08/2018	<0.1	<0.1	<0.2	<100	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<1

Statistical Summary														
Number of Results	15	15	15	7	15	15	15	15	15	15	15	15	15	15
Number of Detects	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Minimum Concentration	<0.1	<0.1	<0.2	<100	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<1
Minimum Detect	ND													
Maximum Concentration	<0.1	<0.1	<0.2	<100	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<1
Maximum Detect	ND													
Average Concentration	0.05	0.05	0.1	50	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.5
Median Concentration	0.05	0.05	0.1	50	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.5
Standard Deviation	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Number of Guideline Exceedances	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Number of Guideline Exceedances(Detects Only)	0	0	0	0	0	0	0	0	0	0	0	0	0	0

QA/QC REPORT

Shaping the Future

Cardno (NSW/ACT) Pty Ltd ABN 95 001 145 035

Unit 1 10 Denney Street Broadmeadow 2292 Australia

Phone +61 2 4965 4555 Fax +61 2 4965 4666

File Reference: 82219014 QAQC Report

Date: 24 September 2018

Wyee Land Pty Ltd C/- Northrop Consulting Engineers 4/257/259 Central Coast Highway Erina, NSW, 2250

QA/QC Report

Supplementary Contamination Assessment Report

Lot 173 DP 1212974 & Lot 212 DP 866437 Hue Hue Road & Bushells Ridge Road, Wyee

This Quality Assurance and Quality Control (QA/QC) report assesses the reliability of field procedures adopted and the analytical results produced as part of the Supplementary Contamination Assessment for Lot 173 DP 1212974 and Lot 212 DP 866437 ('the Site'). The following data quality indicators have been adopted with reference to the National Environment Protection Council, National Environment Protection (Assessment of Site Contamination) Measure, 1999 (amended, April 2013) (NEPM, 2013):

- > Precision The quantitative measure of variability of reproducibility of the data. Is a measure of the reproducibility of on measurements under a given set of conditions the Relative Percent Difference ('RPD') has been adopted to assess the precision of data between duplicate sample pairs;
- > Accuracy The quantitative measure of the closeness of the reported data to the true value. It is a measure of the bias in the analytical results and can often be attributed to: field contamination; insufficient preservation or sample preparation; or inappropriate analytical techniques. Accuracy of the analytical data is assessed by consideration of laboratory control samples, laboratory spikes and analytical techniques in accordance with appropriate standards. Accuracy of the fieldwork is assessed against an assessment of field blank, field trip and rinsate results;
- > Representativeness The confidence that the data is representative of each medium present on the site. Data representativeness is achieved by the collection of samples at an appropriate pattern and density as well as consistent and repeatable sampling techniques and procedures;
- > Completeness A measure of the amount of usable data (expressed as a %) from a data collection activity. Sufficient data is required to enable an assessment of the Decision Rules; and,
- > Comparability The confidence that data may be considered to be equivalent for each sampling and analytical event. This is achieved through consistent sampling and analytical testing and reporting techniques.

The data quality objectives, requirements and indicators for the assessment are presented in Table 1 below.

Table 1 Data Quality Objectiv	ves, Requirements and Indicators	
Data Quality Objective	Requirement	Data Quality Indicator
Precision		
Intra-laboratory Duplicates	1 per 20 samples	RPDs < 50%
Inter-laboratory Duplicates	1 per 20 samples	RPDs < 50%
Laboratory Duplicates	Minimum of 1 per batch per analyte.	RPDs < 50%
Accuracy		
Laboratory Matrix Spikes	1 per batch per volatile/semi-volatile analyte	Recoveries 50% to 150%
Laboratory Surrogate Spikes	1 per volatile/semi-volatile analyte sample (as appropriate)	Recoveries 70% to 130%
Laboratory Method Blanks	At least 1 per batch per analyte tested	Result < Limit of reporting
Laboratory Control Samples	At least 1 per batch per analyte tested	Result < Limit of reporting
Rinsate samples	1 per sampling day	Result < Limit of reporting
Representativeness		
Sampling methodology	Appropriate for the sample type and analytes	Meet Requirement
Samples extracted and analysed within holding times	Specific to each analyte	Meet Requirement
Comparability		
Sampling approach	Consistent for each sample	Meet Requirement
Analysis methodology	Consistent methodology for each sample	Meet Requirement
Handling conditions and sampler	Consistent for each sample	Meet Requirement
Field observations and analytical results	Field observations to support analytical results	Meet Requirement
Consistent laboratory Limit of Reporting (LOR)	Consistent between primary and secondary laboratories	Meet Requirement
Completeness		
Chain of Custody Documentation	Appropriately completed	Meet Requirement
Field Sampling Documentation	Appropriately completed	Meet Requirement
Satisfactory quality assurance/ quality control procedures	In accordance with relevant guidance	Meet Requirement

 Table 1
 Data Quality Objectives, Requirements and Indicators

1 Field QA/QC Results

1.1 Duplicate Sampling Techniques

1.1.1 Soil Sampling

Duplicate samples were collected by splitting soil samples in the field. This comprised collecting a sample of soil from the test pit and splitting it equally (per volume) into three laboratory supplied jars (primary, duplicate and triplicate). This process was repeated until all jars were full and zero headspace remained. Care was taken to collect a representative sample in each jar, that is, from the same strata, location and depth within the test pit.

Field splitting was employed rather than sample homogenisation (blending of a sample in a bowl) and splitting to minimise VOC loss.

1.2 Decontamination Procedures

Decontamination of non-disposable equipment was conducted between sampling events and comprised:

- > The scrubbing of field equipment in contact with potentially contaminated materials with a scrubbing brush and a container of 1% Decon 90 solution; and,
- > Rinsing of equipment with deionised water following scrubbing to remove the detergent.

1.3 Relative Percentage Difference

The precision or repeatability of laboratory results obtained between field split primary and replicate samples (ie. duplicate and triplicate samples) is derived by the calculation of the relative percentage differences (RPDs). The calculation of the RPD is conducted using the following equation:

 $RPD (\%) = \frac{Original - Duplicate}{(Original + Duplicate) / 2} \times 100$

A RPD of +/- 50% is generally considered acceptable.

The comparative analysis between the primary and replicate samples for the sampling event is summarised below in Table 2. Note that when the laboratory result for one or both samples is below the PQL the RPD has been given as NA. Complete laboratory reports are provided in Appendix G.

Contaminant Species		PQL ¹	Primary Sample ID TP107-0.25	Duplicate ID DUP2	RPD	Primary Sample ID TP205-0.1	Duplicate ID DUP1	RPD
	Arsenic	1	<1	<1	NA	2	3	40%
Metals	Cadmium	0.3	<0.3	<0.3	NA	<0.3	<0.3	NA
	Chromium	0.3	2.8	2.3	20%	5.9	4	38%
	Copper	0.5	<0.5	<0.5	NA	5.8	6.2	7%
	Lead	1	2	<1	NA	8	9	12%
	Mercury	0.05	<0.05	<0.05	NA	<0.05	<0.05	NA
	Nickel	0.5	<0.5	<0.5	NA	1.8	1.9	5%
	Zinc	2	<2.0	<2.0	NA	58	60	3%
TRH	C ₆ - C ₉	20	<20	<20	NA	<20	<20	NA
	C ₁₀ - C ₃₆	110	<110	<110	NA	<110	<110	NA
	F1 - C ₆ - C ₉	25	<25	<25	NA	<25	<25	NA
	F2 > C ₁₀ - C ₁₆	25	<25	<25	NA	<25	<25	NA
	F3 > C ₁₆ - C ₃₄	90	<90	<90	NA	<90	<90	NA
	F4 > C ₃₄ - C ₄₀	120	<120	<120	NA	<120	<120	NA
	Naphthalene	0.1	<0.1	<0.1	NA	<0.1	<0.1	NA
BTEX	Benzene	0.1	<0.1	<0.1	NA	<0.1	<0.1	NA
	Ethylbenzene	0.1	<0.1	<0.1	NA	<0.1	<0.1	NA
	Toluene	0.1	<0.1	<0.1	NA	<0.1	<0.1	NA
	Xylene Total	0.3	<0.3	<0.3	NA	<0.3	<0.3	NA
	Total	0.8	<0.8	<0.8	NA	<0.8	<0.8	NA
PAH	B(a)P	0.1	<0.1	<0.1	NA	<0.1	<0.1	NA
	B(a)P TEQ (Upper)	0.3	<0.3	<0.3	NA	<0.3	<0.3	NA
OCP	Total	1.0	<1	<1	NA	<1	<1	NA
	DDT+DDE+DDD	0.3	<0.3	<0.3	NA	<0.3	<0.3	NA
	DDT	0.1	<0.1	<0.1	NA	<0.1	<0.1	NA
	Aldrin + Dieldrin	0.3	<0.3	<0.3	NA	<0.3	<0.3	NA
	Chlordane	0.1	<0.1	<0.1	NA	<0.1	<0.1	NA
	Endosulfan	0.1	<0.1	<0.1	NA	<0.1	<0.1	NA
	Endrin	0.2	<0.2	<0.2	NA	<0.2	<0.2	NA
	Heptachlor	0.1	<0.1	<0.1	NA	<0.1	<0.1	NA
	Methoxychlor	0.1	<0.1	<0.1	NA	<0.1	<0.1	NA
OPP	Total	1.7	<1.7	<1.7	NA	<1.7	<1.7	NA
	Chlorpyrifos	0.2	<0.2	<0.2	NA	<0.2	<0.2	NA
PCB	Total	1.0	<1	<1	NA	<1	<1	NA

 Table 2
 Replicate RDP results for TP107-0.25, TP205-0.1 and associated duplicates

Notes to Table F5:

Bold - indicates exceedance of the acceptable RPD range of +/- 30% for inorganic analytes and +/- 50% for organic analytes

1 - SGS PQL Values

The replicate RPD results summarised in Table 2 indicate that the samples analysed were generally within the acceptable RPD range of +/- 50%.

The RPD results indicate the sampling methodology was acceptable and laboratory precision or repeatability was achieved.

1.4 Rinsate Samples

Rinsate samples are samples of laboratory prepared water poured over or through decontaminated field sampling equipment prior to the collection of environmental samples. Following completion of decontamination procedures (refer Section 1.2) laboratory supplied de-ionised water was poured over sampling equipment (typically a stainless steel garden trowel) and collected into a clean sampling jar for contaminant analysis. Rinsate samples are recovered to determine the adequacy of decontamination procedures and the potential for cross contamination of samples through use of adulterated sampling equipment.

Laboratory results for the Total Heavy Metals analysis of rinsate samples for the investigation are summarised in Table 3. Complete laboratory reports sheets are provided in Appendix G.

Table 3	Summary	of	TRH/BTEX	Rinsate	laboratory	results
---------	---------	----	----------	---------	------------	---------

	Date Sampled	BTEX							TRH	
Sample ID		Benzene	Toluene	Ethyl- benzene	o-Xylene	m+p- Xylene	Total Xylenes	C ₆ - C ₉	C ₁₀ - C ₃₆	
		µg/L	µg/L	µg/L	µg/L	µg/L	μg/L	µg/L	μg/L	
RIN 24.08.2018	24/08/2018	<0.5	<0.5	<0.5	<0.5	<1	<1.5	<40	<450	
SGS P	0.5	0.5	0.5	0.5	1	3	40	450		

Notes to Table:

BOLD - Indicates laboratory result is greater than the laboratory PQL

PQL - Practical Quantification Limit

The rinsate laboratory results summarised in Table 3 were all less than the laboratory PQL, indicating that field decontamination procedures were generally adequate.

2 Laboratory QA/QC Results

The following laboratory QA/QC reports met all Data Quality Objectives:

- SE183217
- SE183218

The following laboratory QA/QC reports did not meet all Data Quality Objectives:

• SE183216 (extraction date)

The rinsate sample (RIN 24.08.2018) required to be extracted by the 29th August, 2018. It was not extracted until the 3rd September, 2018. These times are recommendations only and as samples were refrigerated/chilled adequately at all stages between sampling and analysis this non-compliance is not considered significant.

2.1 Laboratory Replicates

Laboratory replicates are generated by subjecting a separate aliquot of sample through the same preparation and analysis procedures as the primary sample. Comparison of the primary sample to the duplicate will yield a precision measurement (expressed as RPD) in a given matrix.

The laboratory acceptance criteria for duplicate samples are as follows:

- > If results are less than 5 times the PQL, any RPD is acceptable; and,
- > If results are greater than 5 times the PQL, an RPD of 0-50% is acceptable.

All samples from reports SE183216, SE183217 and SE183218 returned RPD values within the acceptance criteria.

2.2 Method Blanks

A Method Blank is an analyte free matrix (laboratory certified clean sands for solid samples or de-ionised water for water samples) which is subjected to the complete preparation and analytical procedure to assess contamination introduced during laboratory procedures.

All laboratory results for method blank analysis were below the PQL indicating laboratory procedures were adequate to prevent cross contamination of samples.

2.3 Matrix Spikes

The Matrix Spike is a separate aliquot of the sample spiked with known concentrations of the analytes of interest. It is analyzed to determine, including the matrix interferences, if the procedure is working within established control limits. Analyte recoveries must lie between 70-130% for inorganics, 60-140% for organics and 10-140% for SVOC and Phenols.

All laboratory results for matrix spike analysis were within the acceptance criteria.

3 Summary

It was considered that the field and laboratory QA/QC criteria were generally within acceptable limits indicating field sampling, storage, handling and decontamination procedures and laboratory preparation and analysis procedures were adequate for the purposes of the environmental investigation.